
DIGITAL GEOMETRY PROCESSING WITH
DISCRETE EXTERIOR CALCULUS

Keenan Crane

SIGGRAPH 2013 Course Notes

Lecturers:

Fernando de Goes

Keenan Crane

Mathieu Desbrun

Peter Schröder
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CHAPTER 1

Introduction
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These notes provide an introduction to working with real-world geometric data, expressed
in the language of discrete exterior calculus (DEC). DEC is a simple, flexible, and efficient frame-
work which provides a unified platform for geometry processing. The notes provide essential
mathematical background as well as a large array of real-world examples, with an emphasis on
applications and implementation. The material should be accessible to anyone with some exposure
to basic linear algebra and vector calculus, though most of the key concepts are reviewed as needed.
Coding exercises depend on a basic knowledge of C++, though knowledge of any programming
language is likely sufficient: we do not make heavy use of paradigms like inheritance, templates,
etc. The notes also provide guided written exercises that can be used to deepen understanding of
the material.

Why use exterior calculus? There are, after all, many other ways to describe algorithms for
mesh processing. One reason has to do with language: the exterior calculus of differential forms
is, to a large degree, the modern language of differential geometry and mathematical physics. By
learning to speak this language we can draw on a wealth of existing knowledge to develop new
algorithms, and better understand current algorithms in terms of a well-developed theory. It also
allows us to easily write down—and implement—many seemingly disparate algorithms in a single,
unified framework. In these notes, for instance, we’ll see how a large number of basic geometry
processing tasks (smoothing, parameterization, vector field design, etc.) can be expressed in only a
few lines of code, typically by solving a simple Poisson equation.

There is another good reason for taking this approach, beyond simply “saying the same thing
in a different way.” By first formulating algorithms in the smooth geometric setting, we can
ensure that essential structures are subsequently preserved at the discrete level. As one elementary
example, consider the vertex depicted above. If we take the sum of the tip angles θi, we get a
number that is (in general) different from 2π. On any smooth surface, however, we expect this
number to be exactly 2π—said in a differential-geometric way: the tangent space at any point should
consist of a “whole circle” of directions. Of course, if we consider finer and finer approximations of
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1. INTRODUCTION 4

a smooth surface by a triangle mesh, the vertex will eventually flatten out and our angle sum will
indeed approach 2π as expected. But there is an attractive alternative even at the coarse level: we
can redefine the meaning of “angle” so that it always yields the expected result. In particular, let

s :=
2π

∑i θi

be the ratio between the angle sum 2π that we anticipate in the smooth setting, and the Euclidean
angle sum ∑i θi exhibited by our finite mesh, and consider the augmented angles

θ̃i := sθi.

In other words, we simply normalize the usual Euclidean angles such that they sum to exactly 2π,
no matter how coarse our mesh is:

∑
i

θ̃i = s ∑
i

θi = 2π.

From here we can carry out all the rest of our calculations as usual, using the augmented or
“discrete” angles θ̃i rather than the usual Euclidean angles θi. Conceptually, we can imagine that
each vertex has been smoothed out slightly, effectively pushing the curvature of our surface into
otherwise flat triangles. This particular convention may not always (or even often) be useful, but
in problems where the tangent space structure of a surface is critical it leads to highly effective
algorithms for mesh processing (see in particular [KCPS13]).

This message is one theme we’ll encounter frequently in these notes: there is no one “right” way
to discretize a given geometric quantity, but rather many different ways, each suited to a particular
purpose. The hope, then, is that one can discretize a whole theory such that all the pieces fit
together nicely. DEC is one such theory, which has proven to be highly successful at preserving the
homological structure of a surface, as we’ll discuss in Chapter 8.

The remainder of these notes proceeds as follows. We first give an overview of the differential
geometry of surfaces (Chapter 2), using a description that leads naturally into a discussion of
smooth exterior calculus (Chapter 3) and its discretization via DEC. We then study some basic
properties of discrete surfaces (Chapter 4) and their normals (Chapter 5), leading up to an equation
that is central to our applications: the discrete Poisson equation (Chapter 6). The remaining chapters
investigate various geometry processing applications, introducing essential geometric concepts
along the way (conformal structure, homology, parallel transport, etc.). Coding exercises refer to a
supplementary C++ framework, available from

https://github.com/dgpdec/course

which includes basic mesh data structures, linear algebra libraries, and visualization tools—any
similar framework or library would be suitable for completing these exercises. Solutions to written
exercises are available upon request.

Our goal throughout these notes was to describe every concept in terms of a concrete geometric
picture—we have tried as much as possible to avoid abstract algebraic arguments. Likewise, to get
the most out of the written exercises one should try to make an intuitive geometric argument first,
and only later fill in the formal details.

https://github.com/dgpdec/course
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1.1. Disclaimer

ACHTUNG!

These notes are very much a work in progress and there will be errors. As always, your brain is
the best tool for determining whether or not a statement is actually true! If you do encounter errors,
please do not hesitate to contact the author (noting the page number and the relevant version of the
notes).

1.2. Copyright

Images were produced solely by the author with the exception of the Stanford Bunny mesh,
which is provided courtesy of the Stanford Graphics Computer Laboratory. The remaining images
are licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.
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for the first draft of many of these notes; Mathieu Desbrun, Fernando de Goes, and Corentin
Wallez provided extensive feedback on the SIGGRAPH 2013 revision. Thanks to Mark Pauly’s
group at EPFL for suffering through (very) early versions of these lectures. Thanks also to those
who have pointed out errors over the years: Mirela Ben-Chen, Nina Amenta, Chris Wojtan, Yuliy
Shcwarzburg, Robert Luo, Andrew Butts, Scott Livingston, and all the students in CS177 at Caltech,
as well as others who I am currently forgetting!

Most of the algorithms described in these notes appear in previous literature. The method for
mean curvature flow appears in [DMSB99]. The conformal parameterization scheme described
in Chapter 7 is based on [MTAD08]. The approach to discrete Helmholtz-Hodge decomposition
described in Chapter 8 is based on the scheme described in [DKT08]. The method for computing
smooth vector fields with prescribed singularities is based on [CDS10]; the improvement using
Helmholtz-Hodge decomposition (Section 8.4.1) is previously unpublished and due to Fernando de
Goes [dGC10]. More material on DEC itself can be found in a variety of sources [Hir03, DHLM05,
DKT08]. Finally, the cotan-Laplace operator central to many of these algorithms has a long history,
dating back at least as far as [Mac49].

http://creativecommons.org/licenses/by-nc-nd/3.0/
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CHAPTER 2

A Quick and Dirty Introduction to Differential Geometry

2.1. The Geometry of Surfaces

There are many ways to think about the geometry of a surface (using charts, for instance) but
here’s a picture that is well-suited to the way we work with surfaces in the discrete setting. Consider
a little patch of material floating in space, as depicted below. Its geometry can be described via a
map f : M→ R3 from a region M in the Euclidean plane R2 to a subset f (M) of R3:

f

X

f (M)

M

df(X)

N

The differential of such a map, denoted by df , tells us how to map a vector X in the plane to the
corresponding vector df(X) on the surface. Loosely speaking, imagine that M is a rubber sheet and
X is a little black line segment drawn on M. As we stretch and deform M into f (M), the segment
X also gets stretched and deformed into a different segment, which we call df(X). Later on we can
talk about how to explicitly express df(X) in coordinates and so on, but it’s important to realize that
fundamentally there’s nothing deeper to know about the differential than the picture you see here—the
differential simply tells you how to stretch out or “push forward” vectors as you go from one space
to another. For example, the length of a tangent vector X pushed forward by f can be expressed as√

df(X) · df(X),

where · is the standard inner product (a.k.a. dot product or scalar product) on R3. Note that this
length is typically different than the length of the vector we started with! To keep things clear, we’ll
use angle brackets to denote the inner product in the plane, e.g., the length of the original vector
would be

√
〈X, X〉. More generally, we can measure the inner product between any two tangent

vectors df(X) and df(Y):
g(X, Y) = df(X) · df(Y).

The map g is called the metric of the surface, or to be more pedantic, the metric induced by f . Note
that throughout we will use df(X) interchangeably to denote both the pushforward of a single
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2.1. THE GEOMETRY OF SURFACES 7

vector or an entire vector field, i.e., a vector at every point of M. In most of the expressions we’ll
consider this distinction won’t make a big difference, but it’s worth being aware of.

So far we’ve been talking about tangent vectors, i.e., vectors that lay flat along the surface. We’re
also interested in vectors that are orthogonal to the surface. In particular, we say that a vector
u ∈ R3 is normal to the surface at a point p if

df(X) · u = 0

for all tangent vectors X at p. For convenience, we often single out a particular normal vector N
called the unit normal, which has length one. Of course, at any given point there are two distinct
unit normal vectors: +N and −N. Which one should we use? If we can pick a consistent direction
for N then we say that M is orientable. For instance, the circular band on the left is orientable, but
the Möbius band on the right is not:

For orientable surfaces, we can actually think of N as a continuous map N : M→ S2 (called the
Gauss map) which associates each point with its unit normal, viewed as a point on the unit sphere
S2 ⊂ R3. In fact, why not think of N as simply a different geometry for M? Now the map dN
(called the Weingarten map) tells us about the change in the normal direction as we move from one
point to the other. For instance, we could look at the change in normal along a particular tangent
direction X by evaluating

κn(X) =
df(X) · dN(X)

|df(X)|2 .

(The factor |df(X)|2 in the denominator simply accounts for any “stretching out” of X that occurs
as we go from the plane to the surface.) The quantity κn is called the normal curvature—we’ll have a
lot more to say about curvature in the future.

Overall we end up with the following picture, which captures the most fundamental ideas
about the geometry of surfaces:
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N

S2

f (M)

f

M

2.1.1. Conformal Coordinates. When working with curves, one often introduces the idea of
an isometric (a.k.a. arc-length or unit speed) parameterization. The idea there is to make certain
expressions simpler by assuming that no “stretching” occurs as we go from the domain into R3.
One way to state this is requirement is

|df(X)| = |X|,
i.e., we ask that the norm of any vector X is preserved.

For surfaces, an isometric parameterization does not always exist (not even locally!). Most of
the time you simply have to stretch things out. For instance, you may know that it’s impossible to
flatten the surface of the Earth onto the plane without distortion—that’s why we end up with all
sorts of different funky projections of the globe.

However, there is a setup that (like arc-length parameterization for curves) makes life a lot
easier when dealing with certain expressions, namely conformal coordinates. Put quite simply, a map
f is conformal if it preserves the angle between any two vectors. More specifically, a conformal map
f : R2 ⊃ M→ R3 satisfies

df(X) · df(Y) = a〈X, Y〉
for all tangent vectors X, Y, where a is a positive function and 〈·, ·〉 is the usual inner product on R2.
In practice, the function a is often replaced with eu for some real-valued function u—this way, one
never has to worry about whether the scaling is positive. Notice that vectors can still get stretched
out, but the surface never gets sheared—for instance, orthogonal vectors always stay orthogonal:
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X

Y

f

df(Y)

df(X)

A key fact about conformal maps is that they always exist, as guaranteed by the uniformization
theorem. In a nutshell, the uniformization theorem says that any disk can be conformally mapped
to the plane. So if we consider any point p on our surface f (M), we know that we can always find
a conformal parameterization in some small, disk-like neighborhood around p. As with unit-speed
curves, it is often enough to simply know that a conformal parameterization exists—we do not
have to construct the map explicitly. And, as with arc-length parameterization, we have to keep
track of the least possible amount of information about how the domain gets stretched out: just a
single number at each point (as opposed to, say, an entire Jacobian matrix).

http://en.wikipedia.org/wiki/Uniformization_theorem
http://en.wikipedia.org/wiki/Uniformization_theorem
http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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2.2. Derivatives and Tangent Vectors

2.2.1. Derivatives on the Real Line. So far we’ve been thinking about the differential in a very
geometric way: it tells us how to stretch out or push forward tangent vectors as we go from one place
to another. In fact, we can apply this geometric viewpoint to pretty much any situation involving
derivatives. For instance, think about a good old fashioned real-valued function φ(x) on the real
line. We typically visualize φ by plotting its value as a height over the x-axis:

φ(x)

x

In this case, the derivative φ′ can be interpreted as the slope of the height function, as suggested
by the dashed line in the picture above. Alternatively, we can imagine that φ stretches out the real
line itself, indicated by the change in node spacing in this picture:

X

φ

dφ(X)

R

φ(R)

Where the derivative is large, nodes are spaced far apart; where the derivative is small, nodes
are spaced close together. This picture inspires us to write the derivative of φ in terms of the
push-forward dφ(X) of a unit tangent vector X pointing along the positive x-axis:

φ′ = dφ(X).

In other words, the derivative of φ is just the “stretch factor” as we go from one copy of R to the
other. But wait a minute—does this equality even make sense? The thing on the left is a scalar, but
the thing on the right is a vector! Of course, any tangent vector on the real line can be represented
as just a single value, quantifying its extent in the positive or negative direction. So this expression
does make sense—as long as we understand that we’re identifying tangent vectors on R with real
numbers. Often this kind of “type checking” can help verify that formulas and expressions are
correct, similar to the way you might check for matching units in a physical equation.
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Here’s another question: how is this interpretation of the derivative any different from our
usual interpretation in terms of height functions? Aren’t we also stretching out the real line in that
case? Well, yes and no—certainly the real line still gets stretched out into some other curve. But
this curve is now a subset of the plane R2—in particular, it’s the curve γ = (x, φ(x)). So for one
thing, “type checking” fails in this case: φ′ is a scalar, but dγ(X) is a 2-vector. But most importantly,
the amount of stretching experienced by the curve doesn’t correspond to our usual notion of the
derivative of φ—for instance, if we look at the magnitude of |dγ(X)| we get

√
1 + (φ′)2. (Why is

this statement true geometrically? How could you write φ′ in terms of dγ(X)? Can you come up
with an expression that recovers the proper sign?)

2.2.2. Directional Derivatives. So far so good: we can think of the derivative of a real-valued
function on R as the pushforward of a (positively-oriented) unit tangent vector X. But what
does dφ(X) mean if φ is defined over some other domain, like the plane R2? This question may
“stretch” your mind a little, but if you can understand this example then you’re well on your way
to understanding derivatives in terms of tangent vectors. Let’s take a look at the geometry of the
problem—again, there are two ways we could plot φ. The usual approach is to draw a height
function over the plane:

φ(x)

The derivative has something to do with the slope of this hill, but in which direction? To answer
this question, we can introduce the idea of a directional derivative—i.e., we pick a vector X and
see how quickly we travel uphill (or downhill) in that direction. And again we can consider an
alternative picture:

φ dφ(X)

R

R2

X
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Since φ is a map from R2 to R, we can imagine that it takes a flat sheet of rubber and stretches it out
into a long, skinny, one-dimensional object along the real line. Therefore if we draw an arrow X
on the original sheet, then the “stretched-out” arrow dφ(X) gives us the rate of change in φ along
the direction X, i.e., the directional derivative. What about type checking? As before, everything
matches up: dφ(X) is a tangent vector on R, so it can be represented by a single real number. (What
if we had continued to work with the height function above? How could we recover the directional
derivative in this case?)

By the way, don’t worry if this discussion seems horribly informal! We’ll see a more explicit,
algebraic treatment of these ideas when we start talking about exterior calculus. The important
thing for now is to build some geometric intuition about derivatives. In particular: a map from any
space to any other space can be viewed as some kind of bending and twisting and stretching (or
possibly tearing!); derivatives can be understood in terms of what happens to little arrows along
the way.
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2.3. The Geometry of Curves

I
X

dγ(X)

γ
γ(I)

The picture we looked at for surfaces is actually a nice way of thinking about shapes of any
dimension. For instance, we can think of a one-dimensional curve as a map γ : I → R3 from an
interval I = [0, T] ⊂ R of the real line to R3. Again the differential dγ tells us how tangent vectors
get stretched out by γ, and again the induced length of a tangent vector X is given by

|dγ(X)| =
√

dγ(X) · dγ(X).

Working with curves is often easier if γ preserves length, i.e., if for every tangent vector X we have

|dγ(X)| = |X|.

There are various names for such a parameterization (“unit speed”, “arc-length”, “isometric”) but the
idea is simply that the curve doesn’t get stretched out when we go from R to R3—think of γ as a
completely relaxed rubber band. This unit-speed view is also often the right one for the discrete
setting where we have no notion of a base domain I—from the very beginning, the curve is given
to us as a subset of R3 and all we can do is assume that it sits there in a relaxed state.

2.3.1. The Frenet Frame.

N
T

B
γ(I)

Suppose we have a unit-speed curve γ and a positively-oriented unit vector X on the interval I.
Then

T = dγ(X)

is a unit vector in R3 tangent to the curve. Carrying this idea one step further, we can look at the
change in tangent direction as we move along γ. Since T may change at any rate (or not at all!) we
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split up the change into two pieces: a unit vector N called the principal normal that expresses the
direction of change, and a scalar κ ∈ R called the curvature that expresses the magnitude of change:

dT(X) = κN.

One thing to realize is that T and N are always orthogonal. Why? Because if the change in T were
parallel to T, then it would cease to have unit length! (This argument is a good one to keep in mind
any time you work with unit vector fields.) Together with a third vector B = T × N called the
binormal, we end up with a very natural orthonormal coordinate frame called the Frenet frame.

How does this frame change as we move along the curve? The answer is given by the Frenet-
Serret formula:  T′

B′
N′


︸ ︷︷ ︸

Q′∈R3

=

 0 κ 0
−κ 0 τ

0 −τ 0


︸ ︷︷ ︸

A∈R3

 T
N
B


︸ ︷︷ ︸

Q∈R3

.

Here T, N, and B are interpreted as row vectors, and a prime indicates the change in a quantity as
we move along the curve at unit speed. For instance, T′ = dT(X), where X is a positively-oriented
unit vector on I. The quantity τ is called the torsion, and describes the way the normal and binormal
twist around the curve.

A concise proof of this formula was given by Cartan. First, since the vectors T, N, and B are
mutually orthogonal, one can easily verify that QQT = I, i.e., Q is an orthogonal matrix. Differenti-
ating this relationship in time, the identity vanishes and we’re left with Q′QT = −(Q′QT)T, i.e.,
the matrix Q′QT is skew-symmetric. But since A = Q′QT, A must also be skew-symmetric. Skew
symmetry implies that the diagonal of A is zero (why?) and moreover, we already know what the
top row (and hence the left column) looks like from our definition of κ and N. The remaining value
A23 = −A32 is not constrained in any way, so we simply give it a name: τ ∈ R.

What do you think about this proof? On the one hand it’s easy to verify; on the other hand,
it provides little geometric understanding. For instance, why does N change in the direction of
both T and B, but B changes only in the direction of N? Can you come up with more geometric
arguments?

2.3.2. Visualizing Curvature. What’s the curvature of a circle S? Well, if S has radius r then
it takes time 2πr to go all the way around the circle at unit speed. During this time the tangent
turns around by an angle 2π. Of course, since T has unit length the instantaneous change in T is
described exclusively by the instantaneous change in angle. So we end up with

κ = |κN| = |dT(X)| = 2π/2πr = 1/r.

In other words, the curvature of a circle is simply the reciprocal of its radius. This fact should make
some intuitive sense: if we watch a circle grow bigger and bigger, it eventually looks just like a
straight line with zero curvature: limr→∞ 1/r = 0. Similarly, if we watch a circle get smaller and
smaller it eventually looks like a single point with infinite curvature: limr→0 1/r = ∞.
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p S

r

γ

p S

γ

Now consider a smooth curve γ in the plane. At any point p ∈ γ there is a circle S called the
osculating circle that best approximates γ, meaning that it has the same tangent direction T and
curvature vector κN. In other words, the circle and the curve agree “up to second order.” (The
phrase “agree up to nth order” is just shorthand for saying that the first n derivatives are equal.)
How do we know such a circle exists? Easy: we can always construct a circle with the appropriate
curvature by setting r = 1/κ; moreover every circle has some tangent pointing in the direction T.
Alternatively, we can consider the a circle passing through p and two other points: one approaching
from the left, another approaching from the right. Since these three points are shared by both γ and
S, the first and second derivatives will agree in the limit (consider that these points can be used to
obtain consistent finite difference approximations of T and κN).

The radius and center of the osculating circle are often referred to as the radius of curvature and
center of curvature, respectively. We can tell this same story for any curve in R3 by considering the
osculating plane T × N, since this plane contains both the tangent and the curvature vector.

For curves it makes little difference whether we express curvature in terms of a change in the
tangent vector or a change in the (principal) normal, since the two vectors are the same up to a
quarter-rotation in the osculating plane. For surfaces, however, it will often make more sense to
think of curvature as the change in the normal vector, since we typically don’t have a distinguished
tangent vector to work with.

http://en.wikipedia.org/wiki/Finite_difference
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2.4. Curvature of Surfaces

Let’s take a more in-depth look at the curvature of surfaces. The word “curvature” really
corresponds to our everyday understanding of what it means for something to be curved: eggshells,
donuts, and cavatappi pasta have a lot of curvature; floors, ceilings, and cardboard boxes do not.
But what about something like a beer bottle? Along one direction the bottle quickly curves around
in a circle; along another direction it’s completely flat and travels along a straight line:

X2

X1

This way of looking at curvature—in terms of curves traveling along the surface—is often how
we treat curvature in general. In particular, let X be a unit tangent direction at some distinguished
point on the surface, and consider a plane containing both df(X) and the corresponding normal N.
This plane intersects the surface in a curve, and the curvature κn of this curve is called the normal
curvature in the direction X:

N df(X)

df(X)N1/κn

Remember the Frenet-Serret formulas? They tell us that the change in the normal along a curve
is given by dN = −κT + τB. We can therefore get the normal curvature along X by extracting the
tangential part of dN:

κn(X) =
−df(X) · dN(X)

|df(X)|2 .
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The factor |df(X)|2 in the denominator simply normalizes any “stretching out” that occurs as we go
from the domain M into R3—a derivation of this formula can be found in Appendix A. Note that
normal curvature is signed, meaning the surface can bend toward the normal or away from it.

2.4.1. Principal, Mean, and Gaussian Curvature.

N

N

N

X2
X1

X1

X21/κ2

1/κ1

At any given point we can ask: along which directions does the surface bend the most? The
unit vectors X1 and X2 along which we find the maximum and minimum normal curvatures κ1 and
κ2 are called the principal directions; the curvatures κi are called the principal curvatures. For instance,
the beer bottle above might have principal curvatures κ1 = 1, κ2 = 0 at the marked point.

We can also talk about principal curvature in terms of the shape operator, which is the unique
map S : TM→ TM satisfying

df (SX) = dN(X)

for all tangent vectors X. The shape operator S and the Weingarten map dN essentially represent
the same idea: they both tell us how the normal changes as we travel along a direction X. The only
difference is that S specifies this change in terms of a tangent vector on M, whereas dN gives us the
change as a tangent vector in R3. It’s worth noting that many authors do not make this distinction,
and simply assume an isometric identification of tangent vectors on M and the corresponding
tangent vectors in R3. However, we choose to be more careful so that we can explicitly account for
the dependence of various quantities on the immersion f —this dependence becomes particularly
important if you actually want to compute something! (By the way, why can we always express the
change in N in terms of a tangent vector? It’s because N is the unit normal, hence it cannot grow or
shrink in the normal direction.)

One important fact about the principal directions and principal curvatures is that they corre-
spond to eigenvectors and eigenvalues (respectively) of the shape operator:

SXi = κiXi.

Moreover, the principal directions are orthogonal with respect to the induced metric: g(X1, X2) =
df (X1) · df (X2) = 0—see Appendix B for a proof of these two facts. The principal curvatures
therefore tell us everything there is to know about normal curvature at a point, since we can express
any tangent vector Y as a linear combination of the principal directions X1 and X2. In particular, if
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Y is a unit vector offset from X1 by an angle θ, then the associated normal curvature is

κn(Y) = κ1 cos2 θ + κ2 cos2 θ,

as you should be able to easily verify using the relationships above. Often, however, working
directly with principal curvatures is fairly inconvenient—especially in the discrete setting.

On the other hand, two closely related quantities—called the mean curvature and the Gaussian
curvature will show up over and over again (and have some particularly nice interpretations in the
discrete world). The mean curvature H is the arithmetic mean of principal curvatures:

H =
κ1 + κ2

2
,

and the Gaussian curvature is the (square of the) geometric mean:

K = κ1κ2.

What do the values of H and K imply about the shape of the surface? Perhaps the most elementary
interpretation is that Gaussian curvature is like a logical “and” (is there curvature along both
directions?) whereas mean curvature is more like a logical “or” (is there curvature along at least one
direction?) Of course, you have to be a little careful here since you can also get zero mean curvature
when κ1 = −κ2.

It also helps to see pictures of surfaces with zero mean and Gaussian curvature. Zero-curvature
surfaces are so well-studied in mathematics that they have special names. Surfaces with zero
Gaussian curvature are called developable surfaces because they can be “developed” or flattened out
into the plane without any stretching or tearing. For instance, any piece of a cylinder is developable
since one of the principal curvatures is zero:

Surfaces with zero mean curvature are called minimal surfaces because (as we’ll see later) they
minimize surface area (with respect to certain constraints). Minimal surfaces tend to be saddle-like
since principal curvatures have equal magnitude but opposite sign:
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The saddle is also a good example of a surface with negative Gaussian curvature. What does a
surface with positive Gaussian curvature look like? The hemisphere is one example:

Note that in this case κ1 = κ2 and so principal directions are not uniquely defined—maximum
(and minimum) curvature is achieved along any direction X. Any such point on a surface is called
an umbilic point.

There are plenty of cute theorems and relationships involving curvature, but those are the basic
facts: the curvature of a surface is completely characterized by the principal curvatures, which are the
maximum and minimum normal curvatures. The Gaussian and mean curvature are simply averages
of the two principal curvatures, but (as we’ll see) are often easier to get your hands on in practice.

2.4.2. The Fundamental Forms. For historical reasons, there are two objects we should proba-
bly mention: first fundamental form I and the second fundamental form II. I’m actually not sure what’s
so fundamental about these forms, since they’re nothing more than a mashup of the metric g and
the shape operator S, which themselves are simple functions of two truly fundamental objects: the
immersion f and the Gauss map N. In fact, the first fundamental form is literally just the induced
metric, i.e.,

I(X, Y) := g(X, Y).
The second fundamental form looks quite similar to our existing expression for normal curvature:

II(X, Y) := −g(SX, Y) = −dN(X) · df(Y).

The most important thing to realize is that I and II do not introduce any new geometric ideas—just
another way of writing down things we’ve already seen.
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2.5. Geometry in Coordinates

f

p+hX

X
p

f (p+hX)

f (p)
df(X)

So far we’ve given fairly abstract descriptions of the geometric objects we’ve been working
with. For instance, we said that the differential df of an immersion f : M → R3 tells us how to
stretch out tangent vectors as we go from the domain M ⊂ R2 into the image f (M) ⊂ R3. Alluding
to the picture above, we can be a bit more precise and define df(X) in terms of limits:

dfp(X) = lim
h→0

f (p + hX)− f (p)
h

.

Still, this formula remains a bit abstract—we may want something more concrete to work with in
practice. When we start working with discrete surfaces we’ll see that df(X) often has an incredibly
concrete meaning—for instance, it might correspond to an edge in our mesh. But in the smooth
setting a more typical representation of df is the Jacobian matrix

J =

 ∂ f 1/∂x1 f 1/∂x2

∂ f 2/∂x1 f 2/∂x2

∂ f 3/∂x1 f 3/∂x2

 .

Here we pick coordinates on R2 and R3, and imagine that

f (x1, x2) = ( f1(x1, x2), f2(x1, x2), f3(x1, x2))

for some triple of scalar functions f1, f2, f3 : M→ R. So if you wanted to evaluate df(X), you could
simply apply J to some vector X = [X1 X2]T.

2.5.1. Coordinate Representations Considered Harmful. You can already see one drawback
of the approach taken above: expressions get a lot longer and more complicated to write out. But
there are other good reasons to avoid explicit matrix representations. The most profound reason is
that matrices can be used to represent many different types of objects, and these objects can behave
in very different ways. For instance, can you guess what the following matrix represents?[

0 1
1 0

]
Give up? It’s quite clear, actually: it’s the adjacency matrix for the complete graph on two vertices.
No, wait a minute—it must be the Pauli matrix σx, representing spin angular momentum along the
x-axis. Or is it the matrix representation for an element of the dihedral group D4? You get the idea:
when working with matrices, it’s easy to forget where they come from—which makes it very easy

http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Pauli_matrices
http://en.wikipedia.org/wiki/Dihedral_group
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to forget which rules they should obey! (Don’t you already have enough things to keep track of?)
The real philosophical point here is that matrices are not objects: they are merely representations of
objects! Or to paraphrase Plato: matrices are merely shadows on the wall of the cave, which give
us nothing more than a murky impression of the real objects we wish to illuminate.

A more concrete example that often shows up in geometry is the distinction between linear
operators and bilinear forms. As a reminder, a linear operator is a map from one vector space to
another, e.g.,

f : R2 → R2; u 7→ f (u),
whereas a bilinear form is a map from a pair of vectors to a scalar, e.g.,

g : R2 ×R2 → R; (u, v) 7→ g(u, v).

Sticking with these two examples let’s imagine that we’re working in a coordinate system (x1, x2),
where f and g are represented by matrices A,B ∈ R2×2 and their arguments are represented by
vectors u, v ∈ R2. In other words, we have

f (u) = Au

and

g(u, v) = uTBv.

x2

x1

u

u

x̃1

x̃2u1

u2

ũ1

ũ2

Now suppose we need to work in a different coordinate system (x̃1, x̃2), related to the first one
by a change of basis P ∈ R2×2. For instance, the vectors u and v get transformed via

ũ = Pu,

ṽ = Pv.
How do we represent the maps f and g in this new coordinate system? We can’t simply evaluate
Aũ, for instance, since A and ũ are expressed in different bases. What we need to do is evaluate

f (u) = Au = AP−1ũ

and similarly
g(u, v) = uTBv = (P−1ũ)TB(P−1ṽ) = ũT(P−TBP−1)ṽ.
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In other words, linear operators transform like

A 7→ AP−1,

whereas bilinear forms transform like

B 7→ P−TBP−1.

So what we discover is that not all matrices transform the same way! But if we’re constantly scrawling
out little grids of numbers, it’s very easy to lose track of which transformations should be applied
to which objects.

2.5.2. Standard Matrices in the Geometry of Surfaces. Admonitions about coordinates aside,
it’s useful to be aware of standard matrix representations for geometric objects because they
provide an essential link to classical results. We’ve already seen a matrix representation for one
object: the differential df can be encoded as the Jacobian matrix J containing first-order derivatives
of the immersion f . What about the other objects we’ve encountered in our study of surfaces?
Well, the induced metric g should be pretty easy to figure out since it’s just a function of the
differential—remember that

g(u, v) = df (u) · df (v).

Equivalently, if we use a matrix I ∈ R2×2 to represent g, then we have

uTIv = (Ju)T(Jv)

which means that
I = JTJ.

We use the letter “I” to denote the matrix of the induced metric, which was historically referred to as
the first fundamental form —fewer authors use this terminology today. In older books on differential
geometry you may also see people talking about “E”, “F”, and “G”, which refer to particular entries
of I:

I =
[
E F
F G

]
.

(Is it clear why “F” appears twice?) One might conjecture that these fifth, sixth, and seventh letters
of the alphabet have fallen out of fashion precisely because they are so coordinate-dependent and
hence carry little geometric meaning on their own. Nonetheless, it is useful to be able to recognize
these critters, because they do show up out there in the wild.

Earlier on, we also looked at the shape operator, defined as the unique map S : TM → TM
satisfying

dN(X) = df (SX),

and the second fundamental form, defined as

II(u, v) = g(Su, v).

(Remember that S turned out to be self-adjoint with respect to g, and likewise II turned out to be
symmetric with respect to its arguments u and v.) If we let S, II ∈ R2×2 be the matrix representations
of S and II, respectively, then we have

uTIIv = uTISv

for all vectors u, v ∈ R2, or equivalently,
II = IS.
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Components of II are classically associated with lowercase letters from the Roman alphabet, namely

II =
[
e f
f g

]
,

which in coordinates (x, y) are given explicitly by

e = N · fxx,
f = N · fxy,
g = N · fyy,

where N is the unit surface normal and fxy denotes the second partial derivative along directions
x and y.

At this point we might want to stop and ask: how does a matrix like IS transform with respect
to a change of basis? The first term, I, is a bilinear form, but the second term S is a linear map! As
emphasized above, we can’t determine the answer by just staring at the matrices themselves—we
need to remember what they represent. In this case, we know that IS corresponds to the second
fundamental form, so it should transform like any other bilinear form: IS 7→ P−T ISP−1.

Finally, we can verify that classical geometric expressions using matrices correspond to the
expressions we derived earlier using the differential. For instance, the classical expression for
normal curvature is

κn(u) =
II(u, u)
I(u, u)

,

which we can rewrite as
uTIIu
uTIu

=
uTISu

uTIu
=

(Ju)T(JSu)

(Ju)T(Ju)
=

df (u) · dN(u)
|df (u)|2 .

Up to a choice of sign, this expression is the same one we obtained earlier by considering a curve
embedded in the surface.



CHAPTER 3

A Quick and Dirty Introduction to Exterior Calculus

Many important concepts in differential geometry can be nicely expressed in the language of
exterior calculus. Initially these concepts will look exactly like objects you know and love from
vector calculus, and you may question the value of giving them funky new names. For instance,
scalar fields are no longer called scalar fields, but are now called 0-forms! In many ways vector
and exterior calculus are indeed “dual” to each-other, but it is precisely this duality that makes
the language so expressive. In the long run we’ll see that exterior calculus also makes it easy to
generalize certain ideas from vector calculus—the primary example being Stokes’ theorem. Actually,
we already started using this language in our introduction to the geometry of surfaces, but here’s
the full story.

3.1. Vectors and 1-Forms

Once upon a time there was a vector named v:

v

What information does v encode? One way to inspect a vector is to determine its extent or
length along a given direction. For instance, we can pick some arbitrary direction α and record the
length of the shadow cast by v along α:

v

α

α(v)

The result is simply a number, which we can denote α(v). The notation here is meant to
emphasize the idea that α is a function: in particular, it’s a linear function that eats a vector and
produces a scalar. Any such function is called a 1-form (also known as a covector).

Of course, it’s clear from the picture that the space of all 1-forms looks a lot like the space of
all vectors: we just had to pick some direction to measure along. But often there is good reason
to distinguish between vectors and 1-forms—the distinction is not unlike the one made between

24
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row vectors and column vectors in linear algebra. For instance, even though rows and column both
represent “vectors,” we only permit ourselves to multiply rows with columns:

[
α1 · · · αn

]  v1
...

vn

 .

If we wanted to multiply, say, two column vectors, we would first have to take the transpose of one
of them to convert it into a row:

vTv =
[

v1 · · · vn
]  v1

...
vn

 .

Same deal with vectors and 1-forms, except that now we have two different operations: sharp
(]), which converts a 1-form into a vector, and flat ([) which converts a vector into a 1-form. For
instance, it’s perfectly valid to write v[(v) or α(α]), since in either case we’re feeding a vector to a
1-form. The operations ] and [ are called the musical isomorphisms.

All this fuss over 1-forms versus vectors (or even row versus column vectors) may seem like
much ado about nothing. And indeed, in a flat space like the plane, the difference between the two
is pretty superficial. In curved spaces, however, there’s an important distinction between vectors
and 1-forms—in particular, we want to make sure that we’re taking “measurements” in the right
space. For instance, suppose we want to measure the length of a vector v along the direction of
another vector u. It’s important to remember that tangent vectors get stretched out by the map
f : R2 ⊃ M→ R3 that takes us from the plane to some surface in R3. Therefore, the operations ]
and [ should satisfy relationships like

u[(v) = g(u, v)

where g is the metric induced by f . This way we’re really measuring how things behave in the
“stretched out” space rather than the initial domain M.

3.1.1. Coordinates. Until now we’ve intentionally avoided the use of coordinates—in other
words, we’ve tried to express geometric relationships without reference to any particular coordinate
system x1, . . . , xn. Why avoid coordinates? Several reasons are often cited (people will mumble
something about “invariance”), but the real reason is quite simply that coordinate-free expressions
tend to be shorter, sweeter, and easier to extract meaning from. This approach is also particularly
valuable in geometry processing, because many coordinate-free expressions translate naturally to
basic operations on meshes.

Yet coordinates are still quite valuable in a number of situations. Sometimes there’s a special
coordinate basis that greatly simplifies analysis—recall our discussion of principal curvature di-
rections, for instance. At other times there’s simply no obvious way to prove something without
coordinates. For now we’re going to grind out a few basic facts about exterior calculus in coor-
dinates; at the end of the day we’ll keep whatever nice coordinate-free expressions we find and
politely forget that coordinates ever existed!
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∂
∂x1

∂
∂x2

dx1

dx2

Let’s setup our coordinate system. For reasons that will become clear later, we’re going to use
the symbols ∂

∂x1 , . . . , ∂
∂xn to represent an orthonormal basis for vectors in Rn, and use dxi, . . . , dxn

to denote the corresponding 1-form basis. In other words, any vector v can be written as a linear
combination

v = v1 ∂

∂x1 + · · ·+ vn ∂

∂xn ,

and any 1-form can be written as a linear combination

α = α1dx1 + · · ·+ αndxn.

To keep yourself sane at this point, you should completely ignore the fact that the symbols ∂
∂xi and dxi

look like derivatives—they’re simply collections of unit-length orthogonal bases, as depicted above.
The two bases dxi and ∂

∂xi are often referred to as dual bases, meaning they satisfy the relationship

dxi
(

∂

∂xj

)
= δi

j =

{
1, i = j
0, otherwise.

This relationship captures precisely the behavior we’re looking for: a vector ∂
∂xi “casts a shadow”

on the 1-form dxj only if the two bases point in the same direction. Using this relationship, we can
work out that

α(v) = ∑
i

αidxi

(
∑

j
vj ∂

∂xj

)
= ∑

i
αivi

i.e., the pairing of a vector and a 1-form looks just like the standard Euclidean inner product.

3.1.2. Notation. It’s worth saying a few words about notation. First, vectors and vector fields
tend to be represented by letters from the end of the Roman alphabet (u, v, w or X, Y, Z, repectively),
whereas 1-forms are given lowercase letters from the beginning of the Greek alphabet (α, β, γ, etc.).
Although one often makes a linguistic distinction between a “vector” (meaning a single arrow)
and a “vector field” (meaning an arrow glued to every point of a space), there’s an unfortunate
precedent to use the term “1-form” to refer to both ideas—sadly, nobody ever says “1-form field!”
Scalar fields or 0-forms are often given letters from the middle of the Roman alphabet ( f , g, h) or
maybe lowercase Greek letters from somewhere in the middle (φ, ψ, etc.).

You may also notice that we’ve been very particular about the placement of indices: coefficients
vi of vectors have indices up, coefficients αi of 1-forms have indices down. Similarly, vector bases

∂
∂xi have indices down (they’re in the denominator), and 1-form bases dxi have indices up. The
reason for being so neurotic is to take advantage of Einstein summation notation: any time a pair of
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variables is indexed by the same letter i in both the “up” and “down” position, we interpret this as
a sum over all possible values of i:

αivi = ∑
i

αivi.

The placement of indices also provides a cute mnemonic for the musical isomorphisms ] and [. In
musical notation ] indicates a half-step increase in pitch, corresponding to an upward movement
on the staff. For instance, both notes below correspond to a “C” with the same pitch1:

Therefore, to go from a 1-form to a vector we raise the indices. For instance, in a flat space we
don’t have to worry about the metric and so a 1-form

α = α1dx1 + · · ·+ αndxn

becomes a vector
α] = α1 ∂

∂x1 + · · ·+ αn ∂

∂xn .

Similarly, [ indicates a decrease in pitch and a downward motion on the staff:

and so [ lowers the indices of a vector to give us a 1-form—e.g.,

v = v1 ∂

∂x1 + · · ·+ vn ∂

∂xn .

becomes
v[ = v1dx1 + · · ·+ vndxn.

1At least on a tempered instrument!
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3.2. Differential Forms and the Wedge Product

In the last subsection we measured the length of a vector by projecting it onto different coordi-
nate axes; this measurement process effectively defined what we call a 1-form. But what happens if
we have a collection of vectors? For instance, consider a pair of vectors u, v sitting in R3:

u

v

We can think of these vectors as defining a parallelogram, and much like we did with a single
vector we can measure this parallelogram by measuring the size of the “shadow” it casts on some
plane:

α

β

γu

v

u×v

For instance, suppose we represent this plane via a pair of unit orthogonal 1-forms α and β.
Then the projected vectors have components

u′ = (α(u), β(u)),
v′ = (α(v), β(v)),

hence the (signed) projected area is given by the cross product

u′ × v′ = α(u)β(v)− α(v)β(u).

Since we want to measure a lot of projected volumes in the future, we’ll give this operation the
special name “α ∧ β”:

α ∧ β(u, v) := α(u)β(v)− α(v)β(u).
As you may have already guessed, α ∧ β is what we call a 2-form. Ultimately we’ll interpret the
symbol ∧ (pronounced “wedge”) as a binary operation on differential forms called the wedge
product. Algebraic properties of the wedge product follow directly from the way signed volumes
behave. For instance, notice that if we reverse the order of our axes α, β the sign of the area changes.
In other words, the wedge product is antisymmetric:

α ∧ β = −β ∧ α.



3.2. DIFFERENTIAL FORMS AND THE WEDGE PRODUCT 29

An important consequence of antisymmetry is that the wedge of any 1-form with itself is zero:

α ∧ α = −α ∧ α
⇒ α ∧ α = 0.

But don’t let this statement become a purely algebraic fact! Geometrically, why should the
wedge of two 1-forms be zero? Quite simply because it represents projection onto a plane of zero
area! (I.e., the plane spanned by α and α.)

Next, consider the projection onto two different planes spanned by α, β and α, γ. The sum of
the projected areas can be written as

α ∧ β(u, v) + α ∧ γ(u, v) = α(u)β(v)− α(v)β(u) + α(u)γ(v)− α(v)γ(u)
= α(u)(β(v) + γ(v))− α(v)(β(u) + γ(u))
=: (α ∧ (β + γ))(u, v),

or in other words ∧ distributes over +:

α ∧ (β + γ) = α ∧ β + α ∧ γ.

Finally, consider three vectors u, v, w that span a volume in R3:

u

v

w

We’d like to consider the projection of this volume onto the volume spanned by three 1-forms
α, β, and γ, but the projection of one volume onto another is a bit difficult to visualize! For now
you can just cheat and imagine that α = dx1, β = dx2, and γ = dx3 so that the mental picture for
the projected volume looks just like the volume depicted above. One way to write the projected
volume is as the determinant of the projected vectors u′, v′, and w′:

α ∧ β ∧ γ(u, v, w) := det
([

u′ v′ w′
])

= det

 α(u) α(v) α(w)
β(u) β(v) β(w)
γ(u) γ(v) γ(w)

 .

(Did you notice that the determinant of the upper-left 2x2 submatrix also gives us the wedge
product of two 1-forms?) Alternatively, we could express the volume as the area of one of the faces
times the length of the remaining edge:
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u′

v′

w′

u′

v′

w′

u′

v′

w′

Thinking about things this way, we might come up with an alternative definition of the wedge
product in terms of the triple product:

α ∧ β ∧ γ(u, v, w) = (u′ × v′) · w′
= (v′ × w′) · u′
= (w′ × u′) · v′

The important thing to notice here is that order is not important—we always get the same
volume, regardless of which face we pick (though we still have to be a bit careful about sign). A
more algebraic way of saying this is that the wedge product is associative:

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

In summary, the wedge product of k 1-forms gives us a k-form, which measures the projected
volume of a collection of k vectors. As a result, the wedge product has the following properties for
any k-form α, l-form β, and m-form γ:

• Antisymmetry: α ∧ β = (−1)kl β ∧ α
• Associativity: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ

and in the case where β and γ have the same degree (i.e., l = m) we have

• Distributivity: α ∧ (β + γ) = α ∧ β + α ∧ γ

A separate fact is that a k-form is antisymmetric in its arguments—in other words, swapping the
relative order of two “input” vectors changes only the sign of the volume. For instance, if α is a
2-form then α(u, v) = −α(v, u). In general, an even number of swaps will preserve the sign; an odd
number of swaps will negate it. (One way to convince yourself is to consider what happens to the
determinant of a matrix when you exchange two of its columns.) Finally, you’ll often hear people
say that k-forms are “multilinear”—all this means is that if you keep all but one of the vectors fixed,
then a k-form looks like a linear map. Geometrically this makes sense: k-forms are built up from k
linear measurements of length (essentially just k different dot products).

3.2.1. Vector-Valued Forms. Up to this point we’ve considered only real-valued k-forms—for
instance, α(u) represents the length of the vector u along the direction α, which can be expressed
as a single real number. In general, however, a k-form can “spit out” all kinds of different values.
For instance, we might want to deal with quantities that are described by complex numbers (C) or
vectors in some larger vector space (e.g., Rn).
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A good example of a vector-valued k-form is our map f : M → R3 which represents the
geometry of a surface. In the language of exterior calculus, f is an R3-valued 0-form: at each point
p of M, it takes zero vectors as input and produces a point f (p) in R3 as output. Similarly, the
differential df is an R3-valued 1-form: it takes one vector (some direction u in the plane) and maps
it to a value df (u) in R3 (representing the “stretched out” version of u).

More generally, if E is a vector space then an E-valued k-form takes k vectors to a single value in
E. However, we have to be a bit careful here. For instance, think about our definition of a 2-form:

α ∧ β(u, v) := α(u)β(v)− α(v)β(u).

If α and β are both E-valued 1-forms, then α(u) and β(v) are both vectors in E. But how do you
multiply two vectors? In general there may be no good answer: not every vector space comes with
a natural notion of multiplication.

However, there are plenty of spaces that do come with a well-defined product—for instance, the
product of two complex numbers a + bi and c + di is given by (ac− bd) + (ad + bc)i, so we have
no trouble explicitly evaluating the expression above. In other cases we simply have to say which
product we want to use—in R3 for instance we could use the cross product ×, in which case an
R3-valued 2-form looks like this:

α ∧ β(u, v) := α(u)× β(v)− α(v)× β(u).



3.3. HODGE DUALITY 32

3.3. Hodge Duality

α

β

γu

v

u×v

Previously we saw that a k-form measures the (signed) projected volume of a k-dimensional
parallelpiped. For instance, a 2-form measures the area of a parallelogram projected onto some
plane, as depicted above. But here’s a nice observation: a plane in R3 can be described either by a
pair of basis directions (α, β), or by a normal direction γ. So rather than measuring projected area,
we could instead measure how well the normal of a parallelogram (u, v) lines up with the normal
of our plane. In other words, we could look for a 1-form γ such that

γ(u× v) = α ∧ β(u, v).

This observation captures the idea behind Hodge duality: a k-dimensional volume in an n-dimensional
space can be specified either by k directions or by a complementary set of (n− k) directions. There
should therefore be some kind of natural correspondence between k-forms and (n− k)-forms.

3.3.1. The Hodge Star. Let’s investigate this idea further by constructing an explicit basis for
the space of 0-forms, 1-forms, 2-forms, etc.—to keep things manageable we’ll work with R3 and its
standard coordinate system (x1, x2, x3). 0-forms are easy: any 0-form can be thought of as some
function times the constant 0-form, which we’ll denote “1.” We’ve already seen the 1-form basis
dx1, dx2, dx3, which looks like the standard orthonormal basis of a vector space:

dx1
dx2

dx3
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What about 2-forms? Well, consider that any 2-form can be expressed as the wedge of two
1-forms:

α ∧ β = (αidxi) ∧ (β jdxj) = αiβ jdxi ∧ dxj.

In other words, any 2-form looks like some linear combination of the basis 2-forms dxi ∧ dxj. How
many of these bases are there? Initially it looks like there are a bunch of possibilities:

dx1 ∧ dx1 dx1 ∧ dx2 dx1 ∧ dx3

dx2 ∧ dx1 dx2 ∧ dx2 dx2 ∧ dx3

dx3 ∧ dx1 dx3 ∧ dx2 dx3 ∧ dx3

But of course, not all of these guys are distinct: remember that the wedge product is antisym-
metric (α ∧ β = −β ∧ α), which has the important consequence α ∧ α = 0. So really our table looks
more like this:

0 dx1 ∧ dx2 −dx3 ∧ dx1

−dx1 ∧ dx2 0 dx2 ∧ dx3

dx3 ∧ dx1 −dx2 ∧ dx3 0

and we’re left with only three distinct bases: dx2 ∧ dx3, dx3 ∧ dx1, and dx1 ∧ dx2. Geometrically
all we’ve said is that there are three linearly-independent “planes” in R3:

dx1 ∧ dx2

dx2 ∧ dx3
dx3 ∧ dx1

How about 3-form bases? We certainly have at least one:

dx1 ∧ dx2 ∧ dx3.

Are there any others? Again the antisymmetry of ∧ comes into play: many potential bases are just
permutations of this first one:

dx2 ∧ dx3 ∧ dx1 = −dx2 ∧ dx1 ∧ dx3 = dx1 ∧ dx2 ∧ dx3,

and the rest vanish due to the appearance of repeated 1-forms:

dx2 ∧ dx1 ∧ dx2 = −dx2 ∧ dx2 ∧ dx1 = 0∧ dx1 = 0.
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In general there is only one basis n-form dx1 ∧ · · · ∧ dxn, which measures the usual Euclidean
volume of a parallelpiped:

dx1 ∧ dx2 ∧ dx3

Finally, what about 4-forms on R3? At this point it’s probably pretty easy to see that there
are none, since we’d need to pick four distinct 1-form bases from a collection of only three. Geo-
metrically: there are no four-dimensional volumes contained in R3! (Or volumes of any greater
dimension, for that matter.) The complete list of k-form bases on R3 is then

• 0-form bases: 1
• 1-form bases: dx1, dx2, dx3

• 2-form bases: dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2

• 3-form bases: dx1 ∧ dx2 ∧ dx3,

which means the number of bases is 1, 3, 3, 1. In fact you may see a more general pattern here: the
number of k-form bases on an n-dimensional space is given by the binomial coefficient

(
n
k

)
=

n!
k!(n− k)!

(i.e., “n choose k”), since we want to pick k distinct 1-form bases and don’t care about the order. An
important identity here is

(
n
k

)
=

(
n

n− k

)
,

which, as anticipated, means that we have a one-to-one relationship between k-forms and (n− k)-
forms. In particular, we can identify any k-form with its complement. For example, on R3 we
have
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? 1 = dx1 ∧ dx2 ∧ dx3

? dx1 = dx2 ∧ dx3

? dx2 = dx3 ∧ dx1

? dx3 = dx1 ∧ dx2

? dx1 ∧ dx2 = dx3

? dx2 ∧ dx3 = dx1

? dx3 ∧ dx1 = dx2

? dx1 ∧ dx2 ∧ dx3 = 1

The map ? (pronounced “star”) is called the Hodge star and captures this idea that planes can be
identified with their normals and so forth. More generally, on any flat space we have

? dxi1 ∧ dxi2 ∧ · · · ∧ dxik = dxik+1 ∧ dxik+2 ∧ · · · ∧ dxin ,

where (i1, i2, . . . , in) is any even permutation of (1, 2, . . . , n).

3.3.2. The Volume Form.

u
v

f

df (u)

df (v)

So far we’ve been talking about measuring volumes in flat spaces like Rn. But how do we
take measurements in a curved space? Let’s think about our usual example of a surface f : R2 ⊃
M→ R3. If we specify a region on our surface via a pair of unit orthogonal vectors u, v ∈ R2, it’s
clear that we don’t want the area dx1 ∧ dx2(u, v) = 1 since that just gives us the area in the plane.
Instead, we want to know what a unit area looks like after it’s been “stretched-out” by the map f .
In particular, we said that the length of a vector df (u) can be expressed in terms of the metric g:

|df (u)| =
√

df (u) · df (u) =
√

g(u, u).

So the area we’re really interested in is the product of the lengths |df (u)||df (v)| =
√

g(u, u)g(v, v).
When u and v are orthonormal the quantity det(g) := g(u, u)g(v, v)− 2g(u, v) is called the determi-
nant of the metric, and can be used to define a 2-form

√
det(g)dx1 ∧ dx2 that measures any area on

our surface. More generally, the n-form

ω :=
√

det(g)dx1 ∧ · · · ∧ dxn

is called the volume form, and will play a key role when we talk about integration.

On curved spaces, we’d also like the Hodge star to capture the fact that volumes have been
stretched out. For instance, it makes a certain amount of sense to identify the constant function 1
with the volume form ω, since ω really represents unit volume on the curved space:

?1 = ω
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3.3.3. The Inner Product on k-Forms. More generally we’ll ask that any n-form constructed
from a pair of k-forms α and β satisfies

α ∧ ?β = 〈〈α, β〉〉ω,

where 〈〈α, β〉〉 = ∑i αiβi is the inner product on k-forms. In fact, some authors use this relationship
as the definition of the wedge product—in other words, they’ll start with something like, “the wedge
product is the unique binary operation on k-forms such that α ∧ ?β = 〈〈α, β〉〉ω,” and from there
derive all the properties we’ve established above. This treatment is a bit abstract, and makes it far
too easy to forget that the wedge product has an extraordinarily concrete geometric meaning. (It’s
certainly not the way Hermann Grassmann thought about it when he invented exterior algebra!).
In practice, however, this identity is quite useful. For instance, if u and v are vectors in R3, then we
can write

u · v = ?
(

u[ ∧ ?v[
)

,

i.e., on a flat space we can express the usual Euclidean inner product via the wedge product. Is it
clear geometrically that this identity is true? Think about what it says: the Hodge star turns v into a
plane with v as a normal. We then build a volume by extruding this plane along the direction u. If
u and v are nearly parallel the volume will be fairly large; if they’re nearly orthogonal the volume
will be quite shallow. (But to be sure we really got it right, you should try verifying this identity in
coordinates!) Similarly, we can express the Euclidean cross product as just

u× v = ?(u[ ∧ v[)],

i.e., we can create a plane with normal u× v by wedging together the two basis vectors u and v.
(Again, working this fact out in coordinates may help soothe your paranoia.)
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3.4. Differential Operators

Originally we set out to develop exterior calculus. The objects we’ve looked at so far—k-forms,
the wedge product ∧ and the Hodge star ?—actually describe a more general structure called an
exterior algebra. To turn our algebra into a calculus, we also need to know how quantities change,
as well as how to measure quantities. In other words, we need some tools for differentiation and
integration. Let’s start with differentiation.

In our discussion of surfaces we briefly looked at the differential df of a surface f : M → R3,
which tells us something about the way tangent vectors get “stretched out” as we move from the
domain M to a curved surface sitting in R3. More generally d is called the exterior derivative and is
responsible for building up many of the differential operators in exterior calculus. The basic idea
is that d tells us how quickly a k-form changes along every possible direction. But how exactly is it
defined? So far we’ve seen only a high-level geometric description.

3.4.1. Div, Grad, and Curl. Before jumping into the exterior derivative, it’s worth reviewing
what the basic vector derivatives div, grad, and curl do, and more importantly, what they look like.
The key player here is the operator ∇ (pronounced “nabla”) which can be expressed in coordinates
as the vector of all partial derivatives:

∇ :=
(

∂

∂x1 , . . . ,
∂

∂xn

)
.

For instance, applying ∇ to a scalar function φ : Rn → R yields the gradient

∇φ =

(
∂ f
∂x1 , . . . ,

∂ f
∂xn

)
,

which can be visualized as the direction of steepest ascent on some terrain:

We can also apply ∇ to a vector field X in two different ways. The dot product gives us the
divergence

∇ · X =
∂X1

∂x1 + · · ·+ ∂Xn

∂xn
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which measures how quickly the vector field is “spreading out”, and on R3 the cross product gives
us the curl

∇× X =

(
∂X3

∂x2 −
∂X2

∂x3 ,
∂X1

∂x3 −
∂X3

∂x1 ,
∂X2

∂x1 −
∂X1

∂x2

)
,

which indicates how much a vector field is “spinning around.” For instance, here’s a pair of vector
fields with a lot of divergence and a lot of curl, respectively:

(Note that in this case one field is just a 90-degree rotation of the other!) On a typical day it’s
a lot more useful to think of div, grad and curl in terms of these kinds of pictures rather than the
ugly expressions above.

3.4.2. Think Differential. Not surprisingly, we can express similar notions using exterior
calculus. However, these notions will be a bit easier to generalize (for instance, what does “curl”
mean for a vector field in R4, where no cross product is defined?). Let’s first take a look at the
exterior derivative of 0-forms (i.e., functions), which is often just called the differential. To keep
things simple, we’ll start with real-valued functions φ : Rn → R. In coordinates, the differential is
defined as

dφ :=
∂φ

∂x1 dx1 + · · ·+ ∂φ

∂xn dxn.

It’s important to note that the terms ∂φ

∂xi actually correspond to partial derivatives of our function φ,
whereas the terms dxi simply denote an orthonormal basis for Rn. In other words, you can think of
dφ as just a list of all the partial derivatives of φ. Of course, this object looks a lot like the gradient
∇φ we saw just a moment ago. And indeed the two are closely related, except for the fact that ∇φ
is a vector field and dφ is a 1-form. More precisely,

∇φ = (dφ)].

3.4.3. Directional Derivatives. Another way to investigate the behavior of the exterior deriv-
ative is to see what happens when we stick a vector u into the 1-form df . In coordinates we get
something that looks like a dot product between the gradient of f and the vector u:

df (u) =
∂ f
∂x1 u1 + · · ·+ ∂ f

∂xn un.
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For instance, in R2 we could stick in the unit vector u = (1, 0) to get the partial derivative ∂ f
∂x1 along

the first coordinate axis:

(Compare this picture to the picture of the gradient we saw above.) In general, df (u) represents
the directional derivative of f along the direction u. In other words, it tells us how quickly f changes
if we take a short walk in the direction u. Returning again to vector calculus notation, we have

df (u) = u · ∇ f .

3.4.4. Properties of the Exterior Derivative. How do derivatives of arbitrary k-forms behave?
For one thing, we expect d to be linear—after all, a derivative is just the limit of a difference, and
differences are certainly linear! What about the derivative of a wedge of two forms? Harken-
ing back to good old-fashioned calculus, here’s a picture that explains the typical product rule
∂

∂x ( f (x)g(x)) = f ′(x)g(x) + f (x)g′(x):

f (x) f (x + h)

g(x)

g(x + h)
O(h) O(h2)

O(h)

The dark region represents the value of f g at x; the light blue region represents the change in
this value as we move x some small distance h. As h gets smaller and smaller, the contribution
of the upper-right quadrant becomes negligible and we can write the derivative as the change in
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f times g plus the change in g times f . (Can you make this argument more rigorous?) Since a
k-form also measures a (signed) volume, this intuition also carries over to the exterior derivative of
a wedge product. In particular, if α is a k-form then d obeys the rule

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

which says that the rate of change of the overall volume can be expressed in terms of changes in
the constituent volumes, exactly as in the picture above.

3.4.5. Exterior Derivative of 1-Forms. To be a little more concrete, let’s see what happens
when we differentiate a 1-form on R3. Working things out in coordinates turns out to be a total
mess, but in the end you may be pleasantly surprised with the simplicity of the outcome! (Later
on we’ll see that these ideas can also be expressed quite nicely without coordinates using Stokes’
theorem, which paves the way to differentiation in the discrete setting.) Applying the linearity of d,
we have

dα = d(α1dx1 + α2dx2 + α3dx3)
= d(α1dx1) + d(α2dx2) + d(α3dx3).

Each term αjdxj can really be thought of a wedge product αj ∧ dxj between a 0-form αj and the
corresponding basis 1-form dxj. Applying the exterior derivative to one of these terms we get

d(αj ∧ dxj) = (dαj) ∧ dxj + αj ∧ (ddxj)︸ ︷︷ ︸
=0

=
∂αj

∂xi dxi ∧ dxj.

To keep things short we used the Einstein summation convention here, but let’s really write out all
the terms:

dα = ∂α1
∂x1 dx1 ∧ dx1 + ∂α1

∂x2 dx2 ∧ dx1 + ∂α1
∂x3 dx3 ∧ dx1

∂α2
∂x1 dx1 ∧ dx2 + ∂α2

∂x2 dx2 ∧ dx2 + ∂α2
∂x3 dx3 ∧ dx2

∂α3
∂x1 dx1 ∧ dx3 + ∂α3

∂x2 dx2 ∧ dx3 + ∂α3
∂x3 dx3 ∧ dx3.

Using the fact that α ∧ β = −β ∧ α, we get a much simpler expression

dα = ( ∂α3
∂x2 − ∂α2

∂x3 )dx2 ∧ dx3

( ∂α1
∂x3 − ∂α3

∂x1 )dx3 ∧ dx1

( ∂α2
∂x1 − ∂α1

∂x2 )dx1 ∧ dx2.

Does this expression look familiar? If you look again at our review of vector derivatives, you’ll
recognize that dα basically looks like the curl of α], except that it’s expressed as a 2-form instead of
a vector field. Also remember (from our discussion of Hodge duality) that a 2-form and a 1-form
are not so different here—geometrically they both specify some direction in R3. Therefore, we can
express the curl of any vector field X as

∇× X =
(
?dX[

)]
.
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It’s worth stepping through the sequence of operations here to check that everything makes sense:
[ converts the vector field X into a 1-form X[; d computes something that looks like the curl, but
expressed as a 2-form dX[; ? turns this 2-form into a 1-form ?dX[; and finally ] converts this

1-form back into the vector field
(
?dX[

)]
. The take-home message here, though, is that the exterior

derivative of a 1-form looks like the curl of a vector field.

So far we know how to express the gradient and the curl using d. What about our other favorite
vector derivative, the divergence? Instead of grinding through another tedious derivation, let’s
make a simple geometric observation: in R2 at least, we can determine the divergence of a vector
field by rotating it by 90 degrees and computing its curl (consider the example we saw earlier).
Moreover, in R2 the Hodge star ? represents a rotation by 90 degrees, since it identifies any line
with the direction orthogonal to that line:

α

?α

Therefore, we might suspect that divergence can be computed by first applying the Hodge star,
then applying the exterior derivative:

∇ · X = ?d ? X[.

The leftmost Hodge star accounts for the fact that d ? X[ is an n-form instead of a 0-form—in vector
calculus divergence is viewed as a scalar quantity. Does this definition really work? Let’s give it a
try in coordinates on R3. First, we have

?X[ = ?(X1dx1 + X2dx2 + X3dx3)
= X1dx2 ∧ dx3 + X2dx3 ∧ dx1 + X3dx1 ∧ dx2.

Differentiating we get

d ? X[ = ∂X1
∂x1 dx1 ∧ dx2 ∧ dx3+
∂X2
∂x2 dx2 ∧ dx3 ∧ dx1+
∂X3
∂x3 dx3 ∧ dx1 ∧ dx2,

but of course we can rearrange these wedge products to simply

d ? X[ =

(
∂X1

∂x1 +
∂X2

∂x2 +
∂X3

∂x3

)
dx1 ∧ dx2 ∧ dx3.

A final application of the Hodge star gives us the divergence

?d ? X[ =
∂X1

∂x1 +
∂X2

∂x2 +
∂X3

∂x3

as desired.
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In summary, for any scalar field φ and vector field X we have

∇φ = (dφ)]

∇× X =
(
?dX[

)]
∇ · X = ?d ? X[

One cute thing to notice here is that (in R3) grad, curl, and div are more or less just d applied to
a 0−, 1− and 2− form, respectively.

3.4.6. The Laplacian. Another key differential operator from vector calculus is the scalar
Laplacian which (confusingly!) is often denoted by ∆ or ∇2, and is defined as

∆ := ∇ · ∇,

i.e., the divergence of the gradient. Although the Laplacian may seem like just yet another in
a long list of derivatives, it deserves your utmost respect: the Laplacian is central to the most
fundamental of physical laws (any diffusion process and all forms of wave propagation, including
the Schrödinger equation); its eigenvalues capture almost everything there is to know about a given
piece of geometry (can you hear the shape of a drum?). Heavy tomes and entire lives have been
devoted to the Laplacian, and in the discrete setting we’ll see that this one simple operator can be
applied to a diverse array of tasks (surface parameterization, surface smoothing, vector field design
and decomposition, distance computation, fluid simulation... you name it, we got it!).

Fortunately, now that we know how to write div, grad and curl using exterior calculus, express-
ing the scalar Laplacian is straightforward: ∆ = ?d ? d. More generally, the k-form Laplacian is given
by

∆ := ?d ? d + d ? d ? .
The name “Laplace-Beltrami” is used merely to indicate that the domain may have some amount
of curvature (encapsulated by the Hodge star). Some people like to define the operator δ := ?d?,
called the codifferential, and write the Laplacian as ∆ = δd + dδ.

One question you might ask is: why is the Laplacian for 0-forms different from the general
k-form Laplacian? Actually, it’s not—consider what happens when we apply the term d ? d? to a
0-form φ: ?φ is an n-form, and so d ? φ must be an (n + 1)-form. But there are no (n + 1)-forms on
an n-dimensional space! So this term is often omitted when writing the scalar Laplacian.
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3.5. Integration and Stokes’ Theorem

In the previous section we talked about how to differentiate k-forms using the exterior derivative
d. We’d also like some way to integrate forms. Actually, there’s surprisingly little to say about
integration given the setup we already have. Suppose we want to compute the total area AΩ of a
region Ω in the plane:

u

v Ai

Ω

If you remember back to calculus class, the basic idea was to break up the domain into a bunch
of little pieces that are easy to measure (like squares) and add up their areas:

AΩ ≈∑
i

Ai.

As these squares get smaller and smaller we get a better and better approximation, ultimately
achieving the true area

AΩ =
∫

Ω
dA.

Alternatively, we could write the individual areas using differential forms—in particular, Ai =
dx1 ∧ dx2(u, v). Therefore, the area element dA is really nothing more than the standard volume
form dx1 ∧ dx2 on R2. (Not too surprising, since the whole point of k-forms was to measure
volume!)

To make things more interesting, let’s say that the contribution of each little square is weighted
by some scalar function φ. In this case we get the quantity∫

Ω
φ dA =

∫
Ω

φ dx1 ∧ dx2.

Again the integrand φ dx1 ∧ dx2 can be thought of as a 2-form. In other words, you’ve been working
with differential forms your whole life, even if you didn’t realize it! More generally, integrands
on an n-dimensional space are always n-forms, since we need to “plug in” n orthogonal vectors
representing the local volume. For now, however, looking at surfaces (i.e., 2-manifolds) will give us
all the intuition we need.
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3.5.1. Integration on Surfaces.

u
v

f

df (u)

df (v)

If you think back to our discussion of the Hodge star, you’ll remember the volume form

ω =
√

det(g)dx1 ∧ dx2,

which measures the area of little parallelograms on our surface. The factor
√

det(g) reminds us
that we can’t simply measure the volume in the domain M—we also have to take into account any
“stretching” induced by the map f : M→ R2. Of course, when we integrate a function on a surface,
we should also take this stretching into account. For instance, to integrate a function φ : M→ R,
we would write ∫

Ω
φω =

∫
Ω

φ
√

det(g) dx1 ∧ dx2.

In the case of a conformal parameterization things become even simpler—since
√

det(g) = a we
have just ∫

Ω
φa dx1 ∧ dx2,

where a : M → R is the scaling factor. In other words, we scale the value of φ up or down
depending on the amount by which the surface locally “inflates” or “deflates.” In fact, this whole
story gives a nice geometric interpretation to good old-fashioned integrals: you can imagine that∫

Ω φ dA represents the area of some suitably deformed version of the initially planar region Ω.

3.5.2. Stokes’ Theorem. The main reason for studying integration on manifolds is to take
advantage of the world’s most powerful tool: Stokes’ theorem. Without further ado, Stokes’ theorem
says that ∫

Ω
dα =

∫
∂Ω

α,

where α is any n− 1-form on an n-dimensional domain Ω. In other words, integrating a differential
form over the boundary of a manifold is the same as integrating its derivative over the entire
domain.

If this trick sounds familiar to you, it’s probably because you’ve seen it time and again in
different contexts and under different names: the divergence theorem, Green’s theorem, the fundamental
theorem of calculus, Cauchy’s integral formula, etc. Picking apart these special cases will really help us
understand the more general meaning of Stokes’ theorem.

3.5.3. Divergence Theorem. Let’s start with the divergence theorem from vector calculus,
which says that ∫

Ω
∇ · XdA =

∫
∂Ω

N · Xd`,



3.5. INTEGRATION AND STOKES’ THEOREM 45

where X is a vector field on Ω and N represents the (outward-pointing) unit normals on the
boundary of Ω. A better name for this theorem might have been the “what goes in must come out
theorem”, because if you think about X as the flow of water throughout the domain Ω then it’s
clear that the amount of water being pumped into Ω (via pipes in the ground) must be the same as
the amount flowing out of its boundary at any moment in time:

Ω

∂Ω

Let’s try writing this theorem using exterior calculus. First, remember that we can write the
divergence of X as ∇ · X = ?d ? X[. It’s a bit harder to see how to write the right-hand side of the
divergence theorem, but think about what integration does here: it takes tangents to the boundary
and sticks them into a 1-form. For instance,

∫
Ω X[ adds up the tangential components of X. To get

the normal component we could rotate X[ by a quarter turn, which conveniently enough is achieved
by hitting it with the Hodge star. Overall we get∫

Ω
d ? X[ =

∫
∂Ω

?X[,

which, as promised, is just a special case of Stokes’ theorem. Alternatively, we can use Stokes’ theo-
rem to provide a more geometric interpretation of the divergence operator itself: when integrated
over any region Ω—no matter how small—the divergence operator gives the total flux through
the region boundary. In the discrete case we’ll see that this boundary flux interpretation is the only
notion of divergence—in other words, there’s no concept of divergence at a single point.

By the way, why does d ? X[ appear on the left-hand side instead of ?d ? X[? The reason is
that ?d ? X[ is a 0-form, so we have to hit it with another Hodge star to turn it into an object that
measures areas (i.e., a 2-form). Applying this transformation is no different from appending dA to
∇ · X—we’re specifying how volume should be measured on our domain.

3.5.4. Fundamental Theorem of Calculus. The fundamental theorem of calculus is in fact so
fundamental that you may not even remember what it is. It basically says that for a real-valued
function φ : R→ R on the real line ∫ b

a

∂φ

∂x
dx = φ(b)− φ(a).

In other words, the total change over an interval [a, b] is (as you might expect) how much you end
up with minus how much you started with. But soft, behold! All we’ve done is written Stokes’
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theorem once again: ∫
[a,b]

dφ =
∫

∂[a,b]
φ,

since the boundary of the interval [a, b] consists only of the two endpoints a and b.

Hopefully these two examples give you a good feel for what Stokes’ theorem says. In the end,
it reads almost like a Zen kōan: what happens on the outside is purely a function of the change
within. (Perhaps it is Stokes’ that deserves the name, “fundamental theorem of calculus!”)
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3.6. Discrete Exterior Calculus

So far we’ve been exploring exterior calculus purely in the smooth setting. Unfortunately this
theory was developed by some old-timers who did not know anything about computers, hence it
cannot be used directly by machines that store only a finite amount of information. For instance, if
we have a smooth vector field or a smooth 1-form we can’t possibly store the direction of every
little “arrow” at each point—there are far too many of them! Instead, we need to keep track of a
discrete (or really, finite) number of pieces of information that capture the essential behavior of the
objects we’re working with; we call this scheme discrete exterior calculus (or DEC for short). The big
secret about DEC is that it’s literally nothing more than the good-old fashioned (continuous) exterior
calculus we’ve been learning about, except that we integrate differential forms over elements of
our mesh.

3.6.1. Discrete Differential Forms. One way to encode a 1-form might be to store a finite
collection of “arrows” associated with some subset of points. Instead, we’re going to do some-
thing a bit different: we’re going to integrate our 1-form over each edge of a mesh, and store the
resulting numbers (remember that the integral of an n-form always spits out a single number) on
the corresponding edges. In other words, if α is a 1-form and e is an edge, then we’ll associate the
number

α̂e :=
∫

e
α

with e, where the use of the hat (ˆ) is supposed to suggest a discrete quantity (not to be confused
with a unit-length vector).

Does this procedure seem a bit abstract to you? It shouldn’t! Think about what this integral
represents: it tells us how strongly the 1-form α “flows along” the edge e on average. More specifically,
remember how integration of a 1-form works: at each point along the edge we take the vector
tangent to the edge, stick it into the 1-form α, and sum up the resulting values—each value tells
us something about how well α “lines up” with the direction of the edge. For instance, we could
approximate the integral via the sum

∫
e

α ≈ |e|
(

1
N

N

∑
i=1

αpi(ê)

)
,

where |e| denotes the length of the edge, {pi} is a sequence of points along the edge, and ê := e/|e|
is a unit vector tangent to the edge:
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ê
pi

αpi

Of course, this quantity tells us absolutely nothing about the strength of the “flow” orthogonal to
the edge: it could be zero, it could be enormous! We don’t really know, because we didn’t take any
measurements along the orthogonal direction. However, the hope is that some of this information
will still be captured by nearby edges (which are most likely not parallel to e).

More generally, a k-form that has been integrated over each k-dimensional cell (edges in 1D,
faces in 2D, etc.) is called a discrete differential k-form. (If you ever find the distinction confusing,
you might find it helpful to substitute the word “integrated” for the word “discrete.”) In practice,
however, not every discrete differential form has to originate from a continuous one—for instance,
a bunch of arbitrary values assigned to each edge of a mesh is a perfectly good discrete 1-form.

3.6.2. Orientation. One thing you may have noticed in all of our illustrations so far is that each
edge is marked with a little arrow. Why? Well, one thing to remember is that direction matters when
you integrate. For instance, the fundamental theorem of calculus (and common sense) tells us that
the total change as you go from a to b is the opposite of the total change as you go from b to a:∫ b

a

∂φ

∂x
dx = φ(b)− φ(a) = −(φ(a)− φ(b)) = −

∫ a

b

∂φ

∂x
dx.

Said in a much less fancy way: the elevation gain as you go from Pasadena to Altadena is 151
meters, so the elevation “gain” in the other direction must be -151 meters! Just keeping track of the
number 151 does you little good—you have to say what that quantity represents.

Altadena

Pasadena

151m -151m

Altadena

Pasadena

Therefore, when we store a discrete differential form it’s not enough to just store a number:
we also have to specify a canonical orientation for each element of our mesh, corresponding to the
orientation we used during integration. For an edge we’ve already seen that we can think about
orientation as a little arrow pointing from one vertex to another—we could also just think of an
edge as an ordered pair (i, j), meaning that we always integrate from i to j.

More generally, suppose that each element of our mesh is an oriented k-simplex σ, i.e., a collection
of k + 1 vertices pi ∈ Rn given in some fixed order (p1, . . . , pk+1). The geometry associated with σ
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is the convex combination of these points:{
k+1

∑
i=1

λi pi

∣∣∣∣∣k+1

∑
i=1

λi = 1

}
⊂ Rn

(Convince yourself that a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and
a 3-simplex is a tetrahedron.)

Two oriented k-simplices have the same orientation if and only if the vertices of one are an even
permutation of the vertices of another. For instance, the triangles (p1, p2, p3) and (p2, p3, p1) have
the same orientation; (p1, p2, p3) and (p2, p1, p3) have opposite orientation.

p1 p2

p3

p1 p2

p3

If a simplex σ1 is a (not necessarily proper) subset of another simplex σ2, then we say that σ1 is
a face of σ2. For instance, every vertex, edge, and triangle of a tetrahedron σ is a face of σ; as is σ
itself! Moreover, the orientation of a simplex agrees with the orientation of one of its faces as long
as we see an even permutation on the shared vertices. For instance, the orientations of the edge
(p2, p1) and the triangle (p1, p3, p2) agree. Geometrically all we’re saying is that the two “point” in
the same direction (as depicted above). To keep yourself sane while working with meshes, the most
important thing is to pick and orientation and stick with it!

So in general, how do we integrate a k-form over an oriented k-simplex? Remember that a
k-form is going to “eat” k vectors at each point and spit out a number—a good canonical choice is to
take the ordered collection of edge vectors (p2 − p1, . . . , pk+1 − p1) and orthogonalize them (using,
say the Gram-Schmidt algorithm) to get vectors (u1, . . . , un). This way the sign of the integrand
changes whenever the orientation changes. Numerically, we can then approximate the integral via
a sum ∫

σ
α ≈ |σ|

N

N

∑
i=1

αpi(u1, . . . , un)
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where {pi} is a (usually carefully-chosen) collection of sample points. (Can you see why the
orientation of σ affects the sign of the integrand?) Sounds like a lot of work, but in practice
one rarely constructs discrete differential forms via integration: more often, discrete forms are
constructed via input data that is already discrete (e.g., vertex positions in a triangle mesh).

By the way, what’s a discrete 0-form? Give up? Well, it must be a 0-form (i.e., a function) that’s
been integrated over every 0-simplex (i.e., vertex) of a mesh:

φ̂i =
∫

vi

φ

By convention, the integral of a function over a zero-dimensional set is simply the value of the
function at that point: φ̂i = φ(vi). In other words, in the case of 0-forms there is no difference
between storing point samples and storing integrated quantities: the two coincide.

It’s also important to remember that differential forms don’t have to be real-valued. For instance,
we can think of a map f : M→ R3 that encodes the geometry of a surface as an R3-valued 0-form;
its differential df is then an R3-valued 1-form, etc. Likewise, when we say that a discrete differential
form is a number stored on every mesh element, the word “number” is used in a fairly loose sense:
a number could be a real value, a vector, a complex number, a quaternion, etc. For instance, the
collection of (x, y, z) vertex coordinates of a mesh can be viewed as an R3-valued discrete 0-form
(namely, one that discretizes the map f ). The only requirement, of course, is that we store the same
type of number on each mesh element.

3.6.3. The Discrete Exterior Derivative. One of the main advantages of working with in-
tegrated (i.e., “discrete”) differential forms instead of point samples is that we can easily take
advantage of Stokes’ theorem. Remember that Stokes’ theorem says∫

Ω
dα =

∫
∂Ω

α,

for any k-form α and k + 1-dimensional domain Ω. In other words, we can integrate the derivative
of a differential form as long as we know its integral along the boundary. But that’s exactly the kind
of information encoded by a discrete differential form! For instance, if α̂ is a discrete 1-form stored
on the three edges of a triangle σ, then we have∫

σ
dα =

∫
∂σ

α =
3

∑
i=1

∫
ei

α =
3

∑
i=1

α̂i.

e1

e2 e3
σ

In other words, we can exactly evaluate the integral on the left by just adding up three numbers.
Pretty cool! In fact, the thing on the left is also a discrete differential form: it’s the 2-form dα

integrated over the only triangle in our mesh. So for convenience, we’ll call this guy “d̂α̂”, and
we’ll call the operation d̂ the discrete exterior derivative. (In the future we will drop the hats from our
notation when the meaning is clear from context.) In other words, the discrete exterior derivative
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takes a k-form that has already been integrated over each k-simplex and applies Stokes’ theorem to
get the integral of the derivative over each k + 1-simplex.

In practice (i.e., in code) you can see how this operation might be implemented by simply taking
local sums over the appropriate mesh elements. However, in the example above we made life
particularly easy on ourselves by giving each edge an orientation that agrees with the orientation
of the triangle. Unfortunately assigning a consistent orientation to every simplex is not always
possible, and in general we need to be more careful about sign when adding up our piecewise
integrals. For instance, in the example below we’d have

(d̂α̂)1 = α̂1 + α̂2 + α̂3

and
(d̂α̂)2 = α̂4 + α̂5 − α̂2.

e1 e4

e3
e2

e5

σ1 σ2

3.6.4. Discrete Hodge Star.

primal

dual

As hinted at above, a discrete k-form captures the behavior of a continuous k-form along k
directions, but not along the remaining n − k directions—for instance, a discrete 1-form in 2D
captures the flow along edges but not in the orthogonal direction. If you paid close attention to the
discussion of Hodge duality, this story starts to sound familiar! To capture Hodge duality in the
discrete setting, we’ll need to define a dual mesh. In general, the dual of an n-dimensional simplicial
mesh identifies every k-simplex in the primal (i.e., original) mesh with a unique (n− k)-cell in the
dual mesh. In a two-dimensional simplicial mesh, for instance, primal vertices are identified with
dual faces, primal edges are identified with dual edges, and primal faces are identified with dual
vertices. Note, however, that the dual cells are not always simplices! (See above.) A dual mesh is
an orthogonal dual if, conceptually, dual elements are contained in orthogonal linear subspaces. For
instance, on a planar triangle mesh a dual edge would make a right angle with the corresponding
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primal edge. For curved domains, we ask only that primal and dual elements be orthogonal
intrinsically, e.g., if one rigidly unfolds a pair of neighboring triangles into the plane, the primal and
dual edges should again be orthogonal.

The fact that dual mesh elements are contained in orthogonal linear subspaces leads naturally to
a notion of Hodge duality in the discrete setting. In particular, the discrete Hodge dual of a (discrete)
k-form on the primal mesh is an (n− k)-form on the dual mesh. Similarly, the Hodge dual of an
k-form on the dual mesh is an (n− k)-form on the primal mesh. Discrete forms on the primal mesh
are called primal forms and discrete forms on the dual mesh are called dual forms. Given a discrete
form α̂ (whether primal or dual), we’ll write its Hodge dual as ?̂α̂.

primal 1-form (circulation) dual 1-form (flux)

Unlike continuous forms, discrete primal and dual forms live in different places (so for instance,
discrete primal k-forms and dual k-forms cannot be added to each other). In fact, primal and dual
forms often have different physical interpretations. For instance, a primal 1-form might represent
the total circulation along edges of the primal mesh, whereas in the same context a dual 1-form
might represent the total flux through the corresponding dual edges (see illustration above).

Of course, these two quantities (flux and circulation) are closely related, and naturally leads
into one definition for a discrete Hodge star called the diagonal Hodge star. Consider a primal k-form
α. If α̂i is the value of α̂ on the k-simplex σi, then the diagonal Hodge star is defined by

?̂α̂i =
|σ?

i |
|σi|

α̂i

for all i, where |σ| indicates the (unsigned) volume of σ (which by convention equals one for a
vertex!) and |σ?| is the volume of the corresponding dual cell. In other words, to compute the dual
form we simply multiply the scalar value stored on each cell by the ratio of corresponding dual
and primal volumes.

If we remember that a discrete form can be thought of as a continuous form integrated over
each cell, this definition for the Hodge star makes perfect sense: the primal and dual quantities
should have the same density, but we need to account for the fact that they are integrated over cells
of different volume. We therefore normalize by a ratio of volumes when mapping between primal
and dual. This particular Hodge star is called diagonal since the ith element of the dual differential
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form depends only on the ith element of the primal differential form. It’s not hard to see, then, that
Hodge star taking dual forms to primal forms (the dual Hodge star) is the inverse of the one that
takes primal to dual (the primal Hodge star).

3.6.5. That’s All, Folks! Hey, wait a minute, what about our other operations, like the wedge
product (∧)? These operations can certainly be defined in the discrete setting, but we won’t go
into detail here—the basic recipe is to integrate, integrate, integrate. Actually, even in continuous
exterior calculus we omitted a couple operations like the Lie derivative (LX) and the interior product
(iα). Coming up with a complete discrete calculus where the whole cast of characters d, ∧, ?, LX, iα,
etc., plays well together is an active and ongoing area of research.



CHAPTER 4

Topological Invariants of Discrete Surfaces

4.1. Euler Characteristic

A topological disk is, roughly speaking, any shape you can get by deforming the unit disk in the
plane without tearing it, puncturing it, or gluing its edges together. Some examples of shapes that
are disks include a flag, a leaf, and a glove. Some examples of shapes that are not disks include a
circle (i.e., a disk without its interior), a ball, a sphere, a donut, a washer, and a teapot. A polygonal
disk is any topological disk constructed out of simple polygons. Similarly, a topological sphere is
any shape resembling the standard sphere, and a polyhedron is a sphere made of polygons. More
generally, a piecewise linear surface is any surface made by gluing together polygons along their
edges; a simplicial surface is a special case of a piecewise linear surface where all the faces are
triangles. The boundary of a piecewise linear surface is the set of edges that are contained in only a
single face (all other edges are shared by exactly two faces). For example, a disk has a boundary
whereas a polyhedron does not. You may assume that surfaces have no boundary unless otherwise
stated.

polygonal disk polyhedron(neither)

EXERCISE 1. Polyhedral Formula. Show that for any polygonal disk with V vertices, E edges,
and F faces, the following relationship holds:

V − E + F = 1

and conclude that for any polyhedron V − E + F = 2.

Hint: use induction. Note that induction is generally easier if you start with a given object and decompose
it into smaller pieces rather than trying to make it larger, because there are fewer cases to think about.

54
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sphere
(g = 1) (g = 2) (g = 3)

torus double torus

Clearly not all surfaces look like disks or spheres. Some surfaces have additional handles that
distinguish them topologically; the number of handles g is known as the genus of the surface
(see illustration above for examples). In fact, among all surfaces that have no boundary and are
connected (meaning a single piece), compact (meaning closed and contained in a ball of finite
size), and orientable (having two distinct sides), the genus is the only thing that distinguishes two
surfaces. A more general formula applies to such surfaces, namely

V − E + F = 2− 2g,

which is known as the Euler-Poincaré; formula.

4.2. Regular Meshes and Average Valence

regular irregular

The valence of a vertex in a piecewise linear surface is the number of faces that contain that
vertex. A vertex of a simplicial surface is said to be regular when its valence equals six.

EXERCISE 2. Regular Valence. Show that the only (connected, orientable) simplicial surface for
which every vertex has regular valence is a torus (g = 1). You may assume that the surface has
finitely many faces. Hint: apply the Euler-Poincaré; formula.

EXERCISE 3. Show that the minimum possible number of irregular valence vertices in a (con-
nected, orientable) simplicial surface K of genus g is given by

m(K) =


4, g = 0
0, g = 1
1, g ≥ 2,

assuming that all vertices have valence at least three and that there are finitely many faces.
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EXERCISE 4. Mean Valence. Show that the mean valence approaches six as the number of
vertices in a (connected, orientable) simplicial surface goes to infinity, and that the ratio of vertices
to edges to faces hence approaches

V : E : F = 1 : 3 : 2.

4.3. Gauss-Bonnet

EXERCISE 5. Area of a Spherical Triangle. Show that the area of a spherical triangle on the
unit sphere with interior angles α1, α2, α3 is

A = α1 + α2 + α3 − π.

Hint: consider the areas A1, A2, A3 of the three shaded regions (called “diangles”) pictured below.

α1

α2

α3

A1 A2 A3

A

EXERCISE 6. Area of a Spherical Polygon. Show that the area of a spherical polygon with
consecutive interior angles β1, . . . , βn is

A = (2− n)π +
n

∑
i=1

βi.

Hint: use the expression for the area of a spherical triangle you just derived!

EXERCISE 7. Angle Defect. Recall that for a discrete planar curve we can define the curvature
at a vertex as the distance on the unit circle between the two adjacent normals. For a discrete
surface we can define (Gaussian) curvature at a vertex v as the area on the unit sphere bounded by a
spherical polygon whose vertices are the unit normals of the faces around v. Show that this area is
equal to the angle defect

d(v) = 2π − ∑
f∈Fv

∠ f (v)

where Fv is the set of faces containing v and ∠ f (v) is the interior angle of the face f at vertex v.
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Hint: consider planes that contain two consecutive normals and their intersection with the unit sphere.

v N

N1 N1N3

N4 N5

N2N2N3

N4

N5

EXERCISE 8. Discrete Gauss-Bonnet Theorem. Consider a (connected, orientable) simplicial
surface K with finitely many vertices V, edges E and faces F. Show that a discrete analog of the
Gauss-Bonnet theorem holds for simplicial surfaces, namely

∑
v∈V

d(v) = 2πχ

where χ = |V| − |E|+ |F| is the Euler characteristic of the surface.



CHAPTER 5

Normals of Discrete Surfaces

?
?

For a smooth surface in R3, the normal direction is easy to define: it is the unique direction
orthogonal to all tangent vectors—in other words, it’s the direction sticking “straight out” of the
surface. For discrete surfaces the story is not so simple. If a mesh has planar faces (all vertices lie in
a common plane) then of course the normal is well-defined: it is simply the normal of the plane.
But if the polygon is nonplanar, or if we ask for the normal at a vertex, then it is not as clear how the
normal should be defined.

In practice there are a number of different possibilities, which arise from different ways of
looking at the smooth geometry. But before jumping in, let’s establish a few basic geometric facts.

5.1. Vector Area

Here’s a simple question: how do you compute the area of a polygon in the plane? Suppose
our polygon has vertices p1, p2, . . . , pn. One way to compute the area is to stick another point q in
the middle and sum up the areas of triangles q, pi, pi+1 as done on the left:

q

q

pi

pi+1

pi

pi+1

58
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A cute fact is that if we place q anywhere and sum up the signed triangle areas, we still recover
the polygon area! (Signed area just means negative if our vertices are oriented clockwise; positive if
they’re counter-clockwise.) You can get an idea of why this happens just by looking at the picture:
positive triangles that cover “too much” area get accounted for by negative triangles.

The proof is an application of Stokes’ theorem—consider a different expression for the area A
of a planar polygon P:

A =
∫

P
dx ∧ dy.

Noting that dx ∧ dy = d(x ∧ dy) = −d(y ∧ dx), we can also express the area as

A =
1
2

∫
P

d(x ∧ dy)− d(y ∧ dx) =
1
2

∫
∂P

x ∧ dy− y ∧ dx,

where we’ve applied Stokes’ theorem in the final step to convert our integral over the entire surface
into an integral over just the boundary. Now suppose that our polygon vertices have coordinates
pi = (xi, yi). From here we can explicitly work out the boundary integral by summing up the
integrals over each edge eij:∫

∂P
x ∧ dy− y ∧ dx = ∑

∫
eij

x ∧ dy− y ∧ dx.

Since the coordinate functions x and y are linear along each edge (and their differentials dx and dy
are therefore constant), we can write these integrals as

∑
∫

eij
x ∧ dy− y ∧ dx = ∑

xi+xj
2 (yj − yi)−

yi+yj
2 (xj − xi)

= 1
2 ∑(pi + pj)× (pj − pi)

= 1
2 ∑ pi × pj − pi × pi − pj × pj − pj × pi

= ∑ pi × pj.

In short, we’ve shown that the area of a polygon can be written as simply

A =
1
2 ∑

i
pi × pj.

EXERCISE 9. Complete the proof by showing that for any point q the signed areas of triangles
(q, pi, pi+1) sum to precisely the expression above.

A more general version of the situation we just looked at with polygon areas is the vector area of
a surface patch f : M→ R3, which is defined as the integral of the surface normal over the entire
domain:

NV :=
∫

M
NdA.
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A very nice property of the vector area is that it depends only on the shape of the boundary ∂M (as
you will demonstrate in the next exercise). As a result, two surfaces that look very different (such
as the ones above) can still have the same vector area—the physical intuition here is that the vector
area measures the total flux through the boundary curve.

For a flat region the normal is constant over the surface and we get just the usual area times
the unit normal vector. Things get more interesting when the surface is not flat—for instance, the
vector area of a circular band is zero since opposing normals cancel each-other out:

EXERCISE 10. Using Stokes’ theorem, show that the vector area can be written as

NV =
1
2

∫
∂M

f ∧ df ,

where the product of two vectors in R3 is given by the usual cross product ×.

u

u⊥

p

Here’s another fairly basic question: consider a triangle sitting in R3, and imagine that we’re
allowed to pull on one of its vertices p. What’s the quickest way to increase its area A? In other
words, what’s the gradient of A with respect to p?

EXERCISE 11. Show that the area gradient is given by

∇p Aσ =
1
2

u⊥

where u⊥ is the edge vector across from p rotated by an angle π/2 in the plane of the triangle (such
that it points toward p).

You should require only a few very simple geometric arguments—there’s no need to write things
out in coordinates, etc.
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5.2. Area Gradient

With these facts out of the way let’s take a look at some different ways to define vertex normals.
There are essentially only two definitions that arise naturally from the smooth picture: the area
gradient and the volume gradient; we’ll start with the former.

The area gradient asks, “which direction should we ‘push’ the surface in order to increase its
total area A as quickly as possible?” Sliding all points tangentially along the surface clearly doesn’t
change anything: we just end up with the same surface. In fact, the only thing we can do to increase
surface area is move the surface in the normal direction. The idea, then, is to define the vertex normal
as the gradient of area with respect to a given vertex.

Since we already know how to express the area gradient for a single triangle σ, we can easily
express the area gradient for the entire surface:

∇p A = ∑
σ

∇Aσ.

Of course, a given vertex p influences only the areas of the triangles touching p. So we can just sum
up the area gradients over this small collection of triangles.

EXERCISE 12. Show that the gradient of surface area with respect to vertex pi can be expressed
as

∇pi A =
1
2 ∑

j

(cot αj + cot βj)(pj − pi)

where pj is the coordinate of the jth neighbor of pi and αj and βj are the angles across from edge
(pi, pj).

pi

pj

αj β j

5.2.1. Mean Curvature Vector. The expression for the area gradient derived in the last exercise
shows up all over discrete differential geometry, and is often referred to as the cotan formula.
Interestingly enough this same expression appears when taking a completely different approach
to defining vertex normals, by way of the mean curvature vector HN. In particular, for a smooth
surface f : M→ R3 we have

∆ f = 2HN

where H is the mean curvature, N is the unit surface normal (which we’d like to compute), and ∆
is the Laplace-Beltrami operator (see below). Therefore, another way to define vertex normals for a
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discrete surface is to simply apply a discrete Laplace operator to the vertex positions and normalize
the resulting vector.

The question now becomes, “how do you discretize the Laplacian?” We’ll take a closer look at
this question in the future, but the remarkable fact is that the most straightforward discretization
of ∆ leads us right back to the cotan formula! In other words, the vertex normals we get from the
mean curvature vector are precisely the same as the ones we get from the area gradient.

This whole story also helps us get better intuition for the Laplace-Beltrami operator ∆ itself.
Unfortunately, there’s no really nice way to write ∆—the standard coordinate formula you’ll find in
a textbook on differential geometry is ∆φ = 1√

|g|
∂

∂xi (
√
|g|gij ∂

∂xj φ), where g is the metric. However,

this obfuscated expression provides little intuition about what ∆ really does, and is damn-near
useless when it comes to discretization since for a triangle mesh we never have a coordinate
representation of g! Later, using exterior calculus, we’ll see that the (0-form) Laplacian can be
expressed as ∆ = ?d ? d, which leads to a fairly straightforward discretization. But for now, we’ll
make use of a nice tool we learned about earlier: conformal parameterization. Remember that if f
is a conformal map, then lengths on M and lengths on f (M) are related by a positive scaling eu.
In other words, |df(X)| = eu|X| for some real-valued function u on M. Moreover, a conformal
parameterization always exists—in other words, we don’t have to make any special assumptions
about our geometry in order to use conformal coordinates in proofs or other calculations. The
reason conformal coordinates are useful when talking about Laplace-Beltrami is that we can write
∆ as simply a rescaling of the standard Laplacian in the plane, i.e., as the sum of second partial
derivatives divided by the metric scaling factor e2u:

∆φ =
d(dφ(X))(X) + d(dφ(Y))(Y)

e2u ,

where X and Y are any pair of unit, orthogonal directions.

What’s the geometric meaning here? Remember that for a good old-fashioned function φ : R→
R in 1D, second derivatives basically tell us about the curvature of a function, e.g., is it concave or
convex?

∂2

∂x2 < 0

∂2

∂x2 > 0

Well, since ∆ is a sum of second derivatives, it’s no surprise that it tells us something about the
mean curvature!

EXERCISE 13. Show that the relationship ∆ f = 2HN holds.
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5.3. Volume Gradient

An alternative way to come up with normals is to look at the volume gradient. Suppose that our
surface encloses some region of space with total volume V . As before, we know that sliding the
surface along itself tangentially doesn’t really change anything: we end up with the same surface,
which encloses the same region of space. Therefore, the quickest way to increase V is to again move
the surface in the normal direction. A somewhat surprising fact is that, in the discrete case, the
volume gradient actually yields a different definition for vertex normals than the one we got from
the area gradient. To express this gradient, we’ll use three-dimensional versions of of our “basic
facts” from above.

First, much like we broke the area of a polygon into triangles, we’re going to decompose the
volume enclosed by our surface into a collection of tetrahedra. Each tetrahedron includes exactly
one face of our discrete surface, along with a new point q. For instance, here’s what the volume
might look like in the vicinity of a vertex p:

q

p

Just as in the polygon case the location of q makes no difference, as long as we work with the
signed volume of the tetrahedra. (Can you prove it?)

Next, what’s the volume gradient for a single tetrahedron? One way to write the volume of a
tet is as

V =
1
3

Ah,

where A is the area of the base triangle and h is the height. Then using the same kind of geometric
reasoning as in the triangle case, we know that

∇pV =
1
3

AN,

where N is the unit normal to the base.
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p

N

A

To express the gradient of the enclosed volume with respect to a given vertex p, we simply sum
up the gradients for the tetrahedra containing p:

∇pV = ∑
i
Vi =

1
3 ∑

i
AiNi.

At first glance this sum does not lead to a nice expression for ∆pV—for instance, it uses the normals
Ni of faces that have little to do with our surface geometry. However, remember that we can place q
anywhere we please and still get the same expression for volume. In particular, if we put q directly
on top of p, then the Ni and Ai coincide with the normals and areas (respectively) of the faces
containing p from our original surface:

Ni

q

p p=q

Ni

EXERCISE 14. Show that the volume gradient points in the same direction as the vector area NV
(i.e., show that they are the same up to a constant factor).

5.4. Other Definitions

So far we’ve only looked at definitions for vertex normals that arise from some smooth definition.
This way of thinking captures the essential spirit of discrete differential geometry: relationships
from the smooth setting should persist unperturbed in the discrete setting (e.g., ∆ f = 2HN should
be true independent of whether ∆, H, and N are smooth objects or discrete ones). Nonetheless,
there are a number of common definitions for vertex normals that do not have a known origin in
the smooth world. (Perhaps you can find one?)
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5.4.1. Uniform Weighting.

NU

NU

Perhaps the simplest way to get vertex normals is to just add up the neighboring face normals:

NU := ∑
i

Ni

The main drawback to this approach is that two different tessellations of the same geometry can
produce very different vertex normals, as illustrated above.

5.4.2. Tip-Angle Weights.

Ni

θi

A simple way to reduce dependence on the tessellation is to weigh face normals by their
corresponding tip angles θ, i.e., the interior angles incident on the vertex of interest:

Nθ := ∑
i

θiNi
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5.4.3. Sphere-Inscribed Polytope.

NS

Here’s another interesting approach to vertex normals: consider the sphere S2 consisting of
all points unit distance from the origin in R3. A nice fact about the sphere is that the unit normal
N at a point x ∈ S2 is simply the point itself! I.e., N(x) = x. So if we start out with a polytope
whose vertices all sit on the sphere, one reasonable way to define vertex normals is to simply use
the vertex positions.

In fact, it’s not too hard to show that the direction of the normal at a vertex pi can be expressed
purely in terms of the edge vectors ej = pj − pi, where pj are the immediate neighbors of pi. In
particular, we have

NS =
1
c

n−1

∑
j=0

ej × ej+1

|ej|2|ej+1|2

where the constant c ∈ R can be ignored since we’re only interested in the direction of the normal.
(For a detailed derivation of this expression, see Max, “Weights for Computing Vertex Normals from
Facet Normals.”) Of course, since this expression depends only on the edge vectors it can be
evaluated on any mesh (not just those inscribed in a sphere).

Implement the following methods:

• Vertex::normalEquallyWeighted()
Purpose: returns unit vertex normal using uniform weights NU
• Vertex::normalAreaWeighted()

Purpose: returns unit vertex normal using face area weights NV
• Vertex::normalAngleWeighted()

Purpose: returns unit vertex normal using tip angle weights Nθ

• Vertex::normalMeanCurvature()
Purpose: returns unit mean curvature normal ∆ f
• Vertex::normalSphereInscribed()

Purpose: returns unit sphere-inscribed normal NS

(The definitions for these methods can be found in Vertex.cpp.)

Once you’ve successfully implemented these methods, test them out on the provided meshes.
For convenience you can flip through the different methods using the keys [1]-[5]. You can
also see what the mesh looks like by viewing it in “wireframe” mode. Do you notice that some
definitions work better than others? When? Why? The only thing you need to submit for the
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coding assignment (via email) is your modified version of Vertex.cpp. (Of course, if you modify
other files you should submit these too! For instance, you might find it convenient to add a method
HalfEdge::cotan() that computes the cotangent of the angle across from a given half edge.)



CHAPTER 6

The Laplacian

Earlier we mentioned that the Laplace-Beltrami operator (commonly abbreviated as just the
Laplacian) plays a fundamental role in a variety of geometric and physical equations. In this
chapter we’ll put the Laplacian to work by coming up with a discrete version of the Poisson equation
for triangulated surfaces. As in the chapter on vertex normals, we’ll see that the same discrete
expression for the Laplacian (via the cotan formula) arises from two very different ways of looking at
the problem: using test functions (often known as Galerkin projection), or by integrating differential
forms (often called discrete exterior calculus).

6.1. Basic Properties

Before we start talking about discretization, let’s establish a few basic facts about the Laplace
operator ∆ and the standard Poisson problem

∆φ = ρ.

Poisson equations show up all over the place—for instance, in physics ρ might represent a mass
density in which case the solution φ would (up to suitable constants) give the corresponding gravi-
tational potential. Similarly, if ρ describes an charge density then φ gives the corresponding electric
potential (you’ll get to play around with these equations in the code portion of this assignment). In
geometry processing a surprising number of things can be done by solving a Poisson equation (e.g.,
smoothing a surface, computing a vector field with prescribed singularities, or even computing the
geodesic distance on a surface).

Often we’ll be interested in solving Poisson equations on a compact surface M without bound-
ary.

EXERCISE 15. A twice-differentiable function φ : M→ R is called harmonic if it sits in the kernel
of the Laplacian, i.e., ∆φ = 0. Argue that the only harmonic functions on a compact domain without
boundary are the constant functions.

Your argument does not have to be incredibly formal—there are just a couple simple observa-
tions that capture the main idea. This fact is quite important because it implies that we can add a
constant to any solution to a Poisson equation. In other words, if φ satisfies ∆φ = ρ, then so does
φ + c since ∆(φ + c) = ∆φ + ∆c = ∆φ + 0 = ρ.

EXERCISE 16. A separate fact is that on a compact domain without boundary, constant functions
are not in the image of ∆. In other words, there is no function φ such that ∆φ = c. Why?

This fact is also important because it tells us when a given Poisson equation admits a solution.
In particular, if ρ has a constant component then the problem is not well-posed. In some situations,

68
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however, it may make sense to simply remove the constant component. I.e., instead of trying to
solve ∆φ = ρ one can solve ∆φ = ρ− ρ̄, where ρ̄ :=

∫
M ρ dV/|M| and |M| is the total volume of M.

However, you must be certain that this trick makes sense in the context of your particular problem!

When working with PDEs like the Poisson equation, it’s often useful to have an inner product
between functions. An extremely common inner product is the L2 inner product 〈·, ·〉, which takes
the integral of the pointwise product of two functions over the entire domain Ω:

〈 f , g〉 :=
∫

Ω
f (x)g(x)dx.

In spirit, this operation is similar to the usual dot product on Rn: it measures the degree to which
two functions “line up.” For instance, the top two functions have a large inner product; the bottom
two have a smaller inner product (as indicated by the dark blue regions):

Similarly, for two vector fields X and Y we can define an L2 inner product

〈X, Y〉 :=
∫

Ω
X(x) ·Y(x)dx

which measures how much the two fields “line up” at each point.

Using the L2 inner product we can express an important relationship known as Green’s first
identity. Green’s identity says that for any sufficiently differentiable functions f and g

〈∆ f , g〉 = −〈∇ f ,∇g〉+ 〈N · ∇ f , g〉∂,

where 〈·, ·〉∂ denotes the inner product on the boundary and N is the outward unit normal.

EXERCISE 17. Using exterior calculus, show that Green’s identity holds. Hint: apply Stokes’
theorem to the 1-form gdf .

One last key fact about the Laplacian is that it is positive-semidefinite, i.e., ∆ satisfies

〈∆φ, φ〉 ≥ 0

for all functions φ. (By the way, why isn’t this quantity strictly greater than zero?) Words cannot
express the importance of (semi)definiteness. Let’s think about a very simple example: functions of
the form φ(x, y) = ax2 + bxy + cy2 in the plane. Any such function can also be expressed in matrix
form:

φ(x, y) =
[

x y
]︸ ︷︷ ︸

xT

[
a b/2

b/2 c

]
︸ ︷︷ ︸

A

[
x
y

]
︸ ︷︷ ︸

x

= ax2 + bxy + cy2,
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and we can likewise define positive-semidefiniteness for A. But what does it actually look like?
As depicted below, positive-definite matrices (xT Ax > 0) look like a bowl, positive-semidefinite
matrices (xT Ax ≥ 0) look like a half-cylinder, and indefinite matrices (xT Ax might be positive or
negative depending on x) look like a saddle:

x2 + y2 x2 x2 − y2

definite semidefinite indefinite

Now suppose you’re a back country skiier riding down this kind of terrain in the middle of
a howling blizzard. You’re cold and exhausted, and you know you parked your truck in a place
where the ground levels out, but where exactly is it? The snow is blowing hard and visibility is
low—all you can do is keep your fingers crossed and follow the slope of the mountain as you make
your descent. (Trust me: this is really how one feels when doing numerical optimization!) If you
were smart and went skiing in Pos Def Valley then you can just keep heading down and will soon
arrive safely back at the truck. But maybe you were feeling a bit more adventurous that day and
took a trip to Semi Def Valley. In that case you’ll still get to the bottom, but may have to hike back
and forth along the length of the valley before you find your car. Finally, if your motto is “safety
second” then you threw caution to the wind and took a wild ride in Indef Valley. In this case you
may never make it home!

In short: positive-definite matrices are nice because it’s easy to find the minimum of the
quadratic functions they describe—many tools in numerical linear algebra are based on this idea.
Same goes for positive definite linear operators like the Laplacian, which can often be thought of
as sort of infinite-dimensional matrices (if you take some time to read about the spectral theorem,
you’ll find that this analogy runs even deeper, especially on compact domains). Given the ubiquity
of Poisson equations in geometry and physics, it’s a damn good thing ∆ is positive-semidefinite!

EXERCISE 18. Using Green’s first identity, show that ∆ is negative-semidefinite on any compact
surface M without boundary. From a practical perspective, why are negative semi-definite operators
just as good as positive semi-definite ones?

http://en.wikipedia.org/wiki/Spectral_theorem
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6.2. Discretization via FEM

ũ

u

φi

The solution to a geometric or physical problem is often described by a function: the temperature
at each point on the Earth, the curvature at each point on a surface, the amount of light hitting each
point of your retina, etc. Yet the space of all possible functions is mind-bogglingly large—too large
to be represented on a computer. The basic idea behind the finite element method (FEM) is to pick a
smaller space of functions and try to find the best possible solution from within this space. More
specifically, if u is the true solution to a problem and {φi} is a collection of basis functions, then we
seek the linear combination of these functions

ũ = ∑
i

xiφi, xi ∈ R

such that the difference ||ũ− u|| is as small as possible with respect to some norm. (Above we see a
detailed curve u and its best approximation ũ by a collection of bump-like basis functions φi.)

Let’s start out with a very simple question: suppose we have a vector v ∈ R3, and want to find
the best approximation ṽ within a plane spanned by two basis vectors e1, e2 ∈ R3:

e1

e2

ṽ

v

Since ṽ is forced to stay in the plane, the best we can do is make sure there’s error only in the
normal direction. In other words, we want the error ṽ− v to be orthogonal to both basis vectors e1
and e2:

(ṽ− v) · e1 = 0,
(ṽ− v) · e2 = 0.
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In this case we get a system of two linear equations for two unknowns, and can easily compute
the optimal vector ṽ.

Now a harder question: suppose we want to solve a standard Poisson problem

∆u = f .

How do we check whether a given function ũ is the best possible solution? The basic picture still
applies, except that our bases are now functions φ instead of finite-dimensional vectors ei, and the
simple vector dot product · gets replaced by the L2 inner product. Unfortunately, when trying to
solve a Poisson equation we don’t know what the correct solution u looks like (otherwise we’d
be done already!). So instead of the error ũ− u, we’ll have to look at the residual ∆ũ− f , which
measures how closely ũ satisfies our original equation. In particular, we want to “test” that the
residual vanishes along each basis direction φj:

〈∆ũ− f , φj〉 = 0,

again resulting in a system of linear equations. This condition ensures that the solution behaves
just as the true solution would over a large collection of possible “measurements.”

Next, let’s work out the details of this system for a triangulated surface. The most natural
choice of basis functions are the piecewise linear hat functions φi, which equal one at their associated
vertex and zero at all other vertices:

vi

At this point you might object: if all our functions are piecewise linear, and ∆ is a second
derivative, aren’t we just going to get zero every time we evaluate ∆u? Fortunately we’re saved by
Green’s identity—let’s see what happens if we apply this identity to our triangle mesh, by breaking
up the integral into a sum over individual triangles σ:

〈∆u, φj〉 = ∑k〈∆u, φj〉σk

= ∑k〈∇u,∇φj〉σk + ∑k〈N · ∇u, φj〉∂σk .

If the mesh has no boundary then this final sum will disappear since the normals of adjacent
triangles are oppositely oriented, hence the boundary integrals along shared edges cancel each-other
out:
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N

N

N

N

N
Nσi

σj

σi

σj

In this case, we’re left with simply
〈∇u,∇φj〉

in each triangle σk. In other words, we can “test” ∆u as long as we can compute the gradients of
both the candidate solution u and each basis function φj. But remember that u is itself a linear
combination of the bases φi, so we have

〈∇u,∇φj〉 =
〈
∇∑

i
xiφi,∇φj

〉
= ∑

i
xi〈∇φi,∇φj〉.

The critical thing now becomes the inner product between the gradients of the basis functions in
each triangle. If we can compute these, then we can simply build the matrix

Aij := 〈∇φi,∇φj〉
and solve the problem

Ax = b
for the coefficients x, where the entries on the right-hand side are given by bi = 〈 f , φi〉 (i.e., we just
take the same “measurements” on the right-hand side).

EXERCISE 19. Show that the aspect ratio of a triangle can be expressed as the sum of the
cotangents of the interior angles at its base, i.e.,

w
h
= cot α + cot β.

h

w

α β

EXERCISE 20. Let e be the edge vector along the base of a triangle. Show that the gradient of
the hat function φ associated with the opposite vertex is given by
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∇φ =
e⊥

2A
,

where e⊥ is the vector e rotated by a quarter turn in the counter-clockwise direction and A is the
area of the triangle.

e

EXERCISE 21. Show that for any hat function φ associated with a given vertex

〈∇φ,∇φ〉 = 1
2
(cot α + cot β)

within a given triangle, where α and β are the interior angles at the remaining two vertices.

α β

EXERCISE 22. Show that for the hat functions φi and φj associated with vertices i and j (respec-
tively) of the same triangle, we have

〈∇φi,∇φj〉 = −
1
2

cot θ,

where θ is the angle between the opposing edge vectors.

i j

θ
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Putting all these facts together, we find that we can express the Laplacian of u at vertex i via the
infamous cotan formula

(∆u)i =
1
2 ∑

j
(cot αj + cot β j)(uj − ui),

where we sum over the immediate neighbors of vertex i.

6.3. Discretization via DEC

The FEM approach reflects a fairly standard way to discretize partial differential equations.
But let’s try a different approach, based on discrete exterior calculus (DEC). Interestingly enough,
although these two approaches are quite different, we end up with exactly the same result!

Again we want to solve the Poisson equation ∆u = f , which (if you remember our discussion
of differential operators) can also be expressed as

?d ? du = f .

We already outlined how to discretize this kind of expression in the notes on discrete exterior
calculus, but let’s walk through it step by step. We start out with a 0-form u, which is specified as a
number ui at each vertex:

ui

Next, we compute the discrete exterior derivative du, which just means that we want to integrate
the derivative along each edge:

(du)ij =
∫

eij

du =
∫

∂eij

u = uj − ui.

ui

uj

(du)ij



6.3. DISCRETIZATION VIA DEC 76

(Note that the boundary ∂eij of the edge is simply its two endpoints vi and vj.) The Hodge star
converts a circulation along the edge eij into the flux through the corresponding dual edge e?ij. In
particular, we take the total circulation along the primal edge, divide it by the edge length to get the
average pointwise circulation, then multiply by the dual edge length to get the total flux through the
dual edge:

(?du)ij =
|e?ij|
eij

(uj − ui).

ui

uj

(?du)ij

Here |eij| and e?ij denote the length of the primal and dual edges, respectively. Next, we take the
derivative of ?du and integrate over the whole dual cell:

(d ? du)i =
∫

Ci

d ? du =
∫

∂Ci

?du = ∑
j

|e?ij|
|eij|

(uj − ui).

(d?du)i

The final Hodge star simply divides this quantity by the area of Ci to get the average value over
the cell, and we end up with a system of linear equations

(?d ? du)i =
1
|Ci|∑j

|e?ij|
|eij|

(uj − ui) = fi

where fi is the value of the right-hand side at vertex i. In practice, however, it’s often preferable to
move the area factor |Ci| to the right hand side, since the resulting system

(?d ? du)i = ∑
j

|e?ij|
|eij|

(uj − ui) = |Ci| fi

can be represented by a symmetric matrix. (Symmetric matrices are often easier to deal with
numerically and lead to more efficient algorithms.) Another way of looking at this transformation
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is to imagine that we discretized the system

d ? du = ? f .

In other words, we converted an equation in terms of 0-forms into an equation in terms of n-
forms. When working with surfaces, the operator d ? d is sometimes referred to as the conformal
Laplacian, because it does not change when we subject our surface to a conformal transformation.
Alternatively, we can think of d ? d as simply an operator that gives us the value of the Laplacian
integrated over each dual cell of the mesh (instead of the pointwise value).

EXERCISE 23. Consider a simplicial surface and suppose we place the vertices of the dual mesh
at the circumcenters of the triangles (i.e., the center of the unique circle containing all three vertices):

vj

vi

e

e?
αj β j

Demonstrate that the dual edge e? (i.e., the line between the two circumcenters) bisects the
primal edge orthogonally, and use this fact to show that

|e?ij|
|eij|

=
1
2
(cot αj + cot β j).

Hence the DEC discretization yields precisely the same “cotan-Laplace” operator as the Galerkin
discretization.

6.4. Meshes and Matrices

So far we’ve been giving a sort of “algorithmic” description of operators like Laplace. For
instance, we determined that the Laplacian of a scalar function u at a vertex i can be approximated
as

(∆u)i =
1
2 ∑

j
(cot αj + cot β j)(uj − ui),

where the sum is taken over the immediate neighbors j of i. In code, this sum could easily be
expressed as a loop and evaluated at any vertex. However, a key aspect of working with discrete
differential operators is building their matrix representation. The motivation for encoding an operator
as a matrix is so that we can solve systems like

∆u = f

using a standard numerical linear algebra package. (To make matters even more complicated, some
linear solvers are perfectly happy to work with algorithmic representations of operators called
callback functions—in general, however, we’ll need a matrix.)
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In the case of the Poisson equation, we want to construct a matrix L ∈ R|V|×|V| (where |V| is
the number of mesh vertices) such that for any vector u ∈ R|V| of values at vertices, the expression
Lu effectively evaluates the formula above. But let’s start with something simpler—consider an
operator B that computes the sum of all neighboring values:

(Bu)i = ∑
j

uj

How do we build the matrix representation of this operator? Think of B a machine that takes a
vector u of input values at each vertex and spits out another vector Bu of output values. In order
for this story to make sense, we need to know which values correspond to which vertices. In other
words, we need to assign a unique index to each vertex of our mesh, in the range 1, . . . , |V|:

9

1011

12

1

2

3
4

6

7
8

5

It doesn’t matter which numbers we assign to which vertices, so long as there’s one number for
every vertex and one vertex for every number. This mesh has twelve vertices and vertex 1 is next
to vertices 2, 3, 4, 5, and 9. So we could compute the sum of the neighboring values as

(Bu)1 =
[

0 1 1 1 1 0 0 0 1 0 0 0
]



u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12



.

Here we’ve put a “1” in the jth place whenever vertex j is a neighbor of vertex i and a “0” otherwise.
Since this row gives the “output” value at the first vertex, we’ll make it the first row of the matrix B.
The entire matrix looks like this:
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B =



0 1 1 1 1 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0 1 1 0 0
1 0 0 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 1 0 0 0 0
1 0 1 1 0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 1 0 1 0 1
0 0 1 0 1 0 0 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1
1 1 1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 1 0 0 1 0 1 1
0 0 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 1 1 1 0 1 1 0



(You could verify that this matrix is correct, or you could go outside and play in the sunshine.
Your choice.) In practice, fortunately, we don’t have to build matrices “by hand”—we can simply
start with a matrix of zeros and fill in the nonzero entries by looping over local neighborhoods of
our mesh.

Finally, one important thing to notice here is that many of the entries of B are zero. In fact,
for most discrete operators the number of zeros far outnumbers the number of nonzeros. For
this reason, it’s usually a good idea to use a sparse matrix, i.e., a data structure that stores only
the location and value of nonzero entries (rather than explicitly storing every single entry of the
matrix). The design of sparse matrix data structures is an interesting question all on its own, but
conceptually you can imagine that a sparse matrix is simply a list of triples (i, j, x) where i, j ∈N

specify the row and column index of a nonzero entry and x ∈ R gives its value.

6.5. The Poisson Equation

In the first part of the coding assignment you’ll build the cotan-Laplace operator and use it to
solve the scalar Poisson equation

∆φ = ρ

on a triangle mesh, where ρ can be thought of as a (mass or charge) density and φ can be thought
of as a (gravitational or electric) potential. Once you’ve implemented the methods below, you can
visualize the results via the Viewer. (If you want to play with the density function ρ, take a look at
the method Viewer::updatePotential.)

CODING 1. Implement the method Mesh::indexVertices() which assigns a unique ID to
each vertex in the range 0, . . . , |V| − 1.

CODING 2. Derive an expression for the cotangent of a given angle purely in terms of the
two incident edge vectors and the standard Euclidean dot product (·) and cross product (×).
Implement the method HalfEdge::cotan(), which computes the cotangent of the angle across
from a given halfedge.
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u

v

α he

CODING 3. Implement the methods Face::area() and Vertex::dualArea(). For the
dual area of a vertex you can simply use one-third the area of the incident faces—you do not need
to compute the area of the circumcentric dual cell. (This choice of area will not affect the order of
convergence.)

CODING 4. Using the methods you’ve written so far, implement the method Mesh::buildLaplacian()
which builds a sparse matrix representing the cotan-Laplace operator. (Remember to initialize the
matrix to the correct size!)

CODING 5. Implement the method Mesh::solveScalarPoissonProblem() which solves
the problem ∆φ = ρ where ρ is a scalar density on vertices (stored in Vertex::rho). You can
use the method solve from SparseMatrix.h; ρ and φ should be represented by instances of
DenseMatrix of the appropriate size. Be careful about appropriately incorporating dual areas into
your computations; also remember that the right-hand side cannot have a constant component!

You should verify that your code produces results that look something like these two images
(density on the left; corresponding potential on the right):

6.6. Implicit Mean Curvature Flow

Next, you’ll use nearly identical code to smooth out geometric detail on a surface mesh (also
known as fairing or curvature flow). The basic idea is captured by the heat equation, which describes
the way heat diffuses over a domain. For instance, if u is a scalar function describing the temperature
at every point on the real line, then the heat equation is given by

∂u
∂t

=
∂2u
∂x2 .
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Geometrically this equation simply says that concave bumps get pushed down and convex
bumps get pushed up—after a long time the heat distribution becomes completely flat. We also
could have written this equation using the Laplacian: ∂u

∂t = ∆u. In fact, this equation is exactly
the one we’ll use to smooth out a surface, except that instead of considering the evolution of
temperature, we consider the flow of the surface f : M→ R3 itself:

∂ f
∂t

= ∆ f .

Remember from our discussion of vertex normals that ∆ f = 2HN, i.e., the Laplacian of position
yields (twice) the mean curvature times the unit normal. Therefore, the equation above reads,
“move the surface in the direction of the normal, with strength proportional to mean curvature.” In
other words, it describes a mean curvature flow.

So how do we compute this flow? We already know how to discretize the term ∆ f —just use
the cotangent discretization of Laplace. But what about the time derivative ∂ f

∂t ? There are all sorts
of interesting things to say about discretizing time, but for now let’s use a very simple idea: the
change over time can be approximated by the difference of two consecutive states:

∂ f
∂t
≈ fh − f0

h
,

where f0 is the initial state of our system (here the initial configuration of our mesh) and fh is the
configuration after a mean curvature flow of some duration h > 0. Our discrete mean curvature
flow then becomes

fh − f0

h
= ∆ f .

The only remaining question is: which values of f do we use on the right-hand side? One idea is to
use f0, which results in the system

fh = f0 + h∆ f0.

This scheme, called forward Euler, is attractive because it can be evaluated directly using the known
data f0—we don’t have to solve a linear system. Unfortunately, forward Euler is not numerically
stable, which means we can take only very small time steps h. One attractive alternative is to use fh
as the argument to ∆, leading to the system

(I − h∆)︸ ︷︷ ︸
A

fh = f0,

where I is the identity matrix (try the derivation yourself!) This scheme, called backward Euler, is
far more stable, though we now have to solve a linear system A fh = f0. Fortunately this system is
highly sparse, which means it’s not too expensive to solve in practice. (Note that this system is not
much different from the Poisson system.)

CODING 6. Implement the method Mesh::buildFlowOperator(), which should look very
similar to Mesh::buildLaplacian.
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CODING 7. Implement the method Mesh::computeImplicitMeanCurvatureFlow(). Note
that you can treat each of the components of f (x, y, and z) as separate scalar quantities.

You should verify that your code produces results that look something like these two images
(original mesh on the left; smoothed mesh on the right):



CHAPTER 7

Surface Parameterization

In this chapter we’re going to look at the problem of surface parameterization. The basic idea
is that we have a surface sitting in space, and we want to “flatten it out” in the plane. The oldest
example, perhaps, is making a map of the Earth:

One thing you’ll notice about maps of the Earth is that they all look distorted in some way:
Greenland looks way too big, or “north” doesn’t quite make a right angle with “east.” These
phenomena reflect a general fact about surface parameterization: it’s usually impossible to flatten
a surface while perfectly preserving both lengths and angles—in other words, not every surface
admits an isometric parameterization. It is, however, always possible to find an angle-preserving or
conformal parameterization, which is what we’ll do in this assignment.

83



7. SURFACE PARAMETERIZATION 84

7.0.1. Two Quarter Turns Make a Flip: A Brief Review of Complex Numbers. If you’ve ever
seen the complex numbers, you’ve probably encountered the totally abysmal description of the
imaginary unit i as the “square root” of negative one:

i =
√
−1.

Since the square of any real number is nonnegative, one argues, the number i must be “imaginary.”
Makes sense, right? The problem with this story is that it neglects the simple geometric meaning of
i, which turns out to be quite real! So, let’s start over: the symbol i denotes a quarter-turn in the
counter-clockwise direction. For instance, if z is a vector pointing east, then iz is a vector pointing
north:

z

iz
C

What happens if we apply another quarter turn? We get a half turn, of course!

zi2z

C

In other words, we have i(iz) = −z. We can abbreviate this statement by writing i2z = −z, which
means we must have

i2 = −1,

i.e., two quater turns make a flip. That’s all. No square roots, and very little imagination required.
Thinking of the imaginary unit i as a 90-degree rotation will be essential in our discussion of
conformal maps.
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7.1. Conformal Structure

JX
X

f

N
df (X)

df (JX) = N × df (X)

f (M)M

For a surface f : M→ R3 sitting in space, we also have a simple way to express 90-degree rotations.
In particular, if df (X) is a tangent vector in R3, we can express a quarter turn in the counter-
clockwise direction by taking the cross product with the unit normal N:

N × df (X),

Since the vector N × df (X) is also tangent to the immersed surface f (M), there must be some
corresponding tangent vector on the domain M—let’s call this vector JX. In other words,

df (JX) = N × df (X).

The map J is called the conformal structure induced by the immersion f . (Some might prefer to
call J an almost complex structure or a linear complex structure, but for surfaces all of these ideas are
essentially the same.) A Riemann surface is a surface with a complex structure, i.e., it is a surface
where we know how to measure angles between tangent vectors (but possibly not their length).

The most important thing to remember about the conformal structure J is that, like the
imaginary unit i, there is nothing strange or mysterious about it: it denotes a quarter turn in the
counter-clockwise direction. And, as before, two quarter turns make a flip:

J 2 = −id,

where id just denotes the identity.

At this point you might be wondering, “ok, so why do we bother with two different objects, i
and J , that do exactly the same thing?” This story is especially confusing given that the domain M
in the picture above looks an awful lot like a piece of the (complex) plane. But in general, M does
not have to be a piece of the plane—it can be any topological surface (a sphere, a donut, etc.). And
in general, tangent vectors are not complex numbers! Therefore, it doesn’t make much sense to write
iX, nor does it make sense to write J z. But there’s clearly a relationship we want to capture here,
and that relationship is described by our good friends Augustin Cauchy and Bernhard Riemann.
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7.2. The Cauchy-Riemann Equation

i

JX
X

f

z

df (X)
df (JX)

1

dz(X)

dz(JX)

C

abstract domain

M

parameterization

immersed surface

Remember that, like the cartographers of yore, our goal is to parameterize a given surface over
the plane. In particular, we want to find a map that preserves angles. How can we express this
condition more explicitly? Well, we know how to express 90-degree rotations on the surface, using
the complex structure J . And we know how to express 90-degree rotations in the plane, using
the imaginary unit i. Therefore, an angle-preserving or conformal map z : M→ C must satisfy the
Cauchy-Riemann equation

dz(JX) = idz(X)

for all tangent vectors X on M. In other words, rotating a vector by 90-degrees and then mapping it
into the plane is no different from mapping it into the plane and then rotating it by 90 degrees. To
be more precise, z is a holomorphic function, meaning that it preserves both angles and orientation
(dz(X)× dz(JX) sticks “out” of the plane). Maps that preserve angles but reverse orientation are
called antiholomorphic.

Note that the meaning of dz in the Cauchy-Riemann equation is no different from the meaning
of df when we talk about an immersion f : it tells us how tangent vectors get “stretched out” as we
go from one space to another. In fact, like f , the map z is just another immersion of M—this time into
C instead of R3. The basic idea of the Cauchy-Riemann equation is that both of these immersions
should share an identical notion of angle, as emphasized in the illustration above. One way to look
at this picture is to imagine that we start out with the abstract domain M, which “doesn’t know”
how to measure the angle between two vectors. By immersing M in three-dimensional space (via
the map f ), we inherit the usual Euclidean notion of angle. We then look for a map z to the complex
plane that shares this same notion of angle (but perhaps a different notion of length!).
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7.3. Differential Forms on a Riemann Surface

Half of life is knowing what you want. The other half is knowing how to get it. In this case, we
know what we want: a map z satisfying the Cauchy-Riemann equation. But how do we actually
compute it? In order to connect this question to our existing computational tools, let’s rewrite
Cauchy-Riemann in terms of exterior calculus. In fact, let’s revisit the whole idea of differential
forms in the context of surfaces and their conformal structure. As we’ll see, this way of thinking
can lead to some beautifully simple geometric expressions.

Recall our geometric interpretation of real-valued differential forms: a k-form measures some
k-dimensional volume (length, area, etc.). One thing to notice is that on an n-manifold, there are no
n + 1-dimensional volumes to measure. For instance, we can’t measure two-dimensional areas on
a curve—just one-dimensional lengths. Likewise, we can’t measure three-dimensional volumes
on a surface—just 1D lengths and 2D areas. For this reason, differential forms on surfaces become
particularly simple to understand:

• 0-forms look like scalar functions,
• 1-forms look like vector fields, and
• 2-forms look like scalar multiples of area.

That’s where the list ends! There are no 3-forms (or 4-forms, or 5-forms. . . ) to worry about. (A
more algebraic way to convince yourself of this fact is to consider the antisymmetry of the wedge
product: α∧ β = −β∧ α. What happens when you take the wedge of more than two basis 1-forms?)

The Hodge star is also particularly easy to express on surfaces. Recall the basic idea behind the
Hodge star: in n-dimensions, we can specify any k-dimensional linear subspace via a complemen-
tary (n− k)-dimensional subspace. For instance, we can describe a plane in R3 either by two basis
vectors, or by a single normal vector. On surfaces, the most interesting case is perhaps the Hodge
star on 1-forms. Roughly speaking, any 1-form α can also be specified via an orthogonal 1-form ?α
of equal length:

α

?α
TM

Look familiar? At this point it becomes clear that, at least on surfaces, the Hodge star on 1-forms is
closely connected to the conformal structure J . More precisely, if α is a 1-form on a surface M then
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we can define the 1-form Hodge star ? via

?α(X) := α(JX)

for any tangent vector field X. In other words, applying ?α to a vector X is the same as applying
α to the rotated vector JX. The Hodge star on 2-forms can also be expressed via the conformal
structure. In particular, let ω be any 2-form on a surface M, and let X be any unit vector field. Then
we have

?ω := ω(X,JX).
In other words, by using our 2-form to measure a little square of unit area, we can determine the
associated “scale factor,” which is just a scalar function on the surface (i.e., a 0-form).

Notice that we’ve adopted a particular convention here: there are two equal and opposite
directions orthogonal to α, and we could have just as easily adopted the convention that ?α(X) =
−α(JX) (many authors do!). An important thing to be aware of is how this choice affects our
expression for the inner product.

EXERCISE 24. Like the inner product for vectors, functions, or vector fields, the inner product
on 1-forms captures the notion of how well two 1-forms “line up.” Any such inner product should
be positive-definite, i.e., we should have 〈〈α, α〉〉 ≥ 0 for any 1-form α. Show that the inner product

〈〈α, β〉〉 =
∫

M
?α ∧ β.

on real-valued 1-forms α, β is positive-definite only if we adopt the convention ?α(X) = α(JX).
Likewise, show that the inner product

〈〈α, β〉〉 =
∫

M
α ∧ ?β.

is positive-definite only if we adopt the convention ?α(X) = −α(JX). Hint: evaluate the expressions
?α ∧ α(X,JX) and α ∧ ?α(X,JX).

Throughout we will adopt the former convention (?α(X) := α(JX)), and will use double bars
|| · || to denote the corresponding norm, i.e.,

||α|| :=
√
〈〈α, α〉〉

EXERCISE 25. Show that the Hodge star preserves the norm of any 1-form α, i.e.,

|| ? α|| = ||α||.
What’s the geometric intuition?

7.3.1. Complex Differential Forms. In general, a k-form is a multilinear map from k vectors
to a scalar. However, a “scalar” does not have to be a real number. For instance, when we looked
at the area vector, we viewed the map f : M → R3 as an R3-valued 0-form, and its differential
df : TM→ R3 as an R3-valued 1-form. Likewise, we can also talk about complex-valued k-forms,
i.e., functions taking k vectors to a single complex number. In the complex setting, it becomes
difficult to interpret k-forms as objects measuring k-dimensional volumes (what’s a “complex”
volume?), but we still retain all the same algebraic properties (multilinearity, antisymmetry, etc.).
We also have a few new tools at our disposal.

EXERCISE 26. Let z = a + bi be any complex number. The complex conjugate of z is the number
z̄ := a− bi. Show that for any two complex numbers u, v ∈ C we have

ūv = u · v + (u× v)i
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where on the right-hand side we interpret u, v as vectors in R2. Hint: expand the left-hand side in
components. Remember that i2 = −1!

EXERCISE 27. In the real setting, inner products are symmetric: we can exchange the two
arguments without affecting the result. In the complex setting, the analogous concept is that an
inner product is Hermitian: changing the arguments only conjugates the result. In other words, for
any Hermitian inner product 〈·, ·〉 on complex numbers, we have

〈u, v〉 = 〈v, u〉.
Show that the inner product

〈u, v〉 := ūv
introduced in the previous exercise is Hermitian and positive-definite. Hint: use the formula you just
derived!

Just as we can conjugate complex numbers, we can conjugate complex-valued 1-forms. As one
might expect, this operation simply flips the imaginary part of the result:

(ᾱ)(X) := (α(X)).

Similarly, we can define (α ∧ β)(X, Y) := (α ∧ β(X, Y)), in which case α ∧ β = ᾱ ∧ β̄ (why?).

EXERCISE 28. Let α, β be complex 1-forms on M. Show that the inner product

〈〈α, β〉〉 :=
∫

M
?ᾱ ∧ β

is Hermitian and positive-definite. Hint: evaluate the integrand on a basis (X,JX); the second part of
your proof should be very similar to the real case.

7.4. Conformal Parameterization

At long last we have all the tools we need to describe our algorithm for conformal parame-
terization. Remember that we want to find a map z : M → C that satisfies the Cauchy-Riemann
equation

dz(JX) = idz(X)

for all tangent vectors X. If we interpret dz as a complex-valued 1-form, we can rewrite this
relationship as just

?dz = idz.
Note that the geometric meaning of this statement hasn’t changed: the map ?dz rotates its argument
by 90 degrees before mapping it to the plane; idz rotates vectors by 90-degrees after mapping them
into the plane. Ultimately, angles are preserved. We can measure the failure of a map to be conformal
by measuring the total difference between the expression on the left and the expression on the right:

EC(z) := 1
4 || ? dz− idz||2.

The quantity E(z) is called the conformal energy. To compute a conformal map, then, we just need to
solve a simple convex quadratic optimization problem

min
z

EC(z),

subject to appropriate constraints. First, however, we’re going to rewrite this energy in terms of
familiar objects like the Laplacian—this formulation will make it particularly simple to setup and
solve our optimization problem in the discrete setting.
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EXERCISE 29. Let u, v be complex functions on M. Assuming that the normal derivative of
either function vanishes along the boundary, show the first Green’s identity

〈〈du, dv〉〉 = 〈〈∆u, v〉〉

where ∆ = − ? d ? d is the Laplace-Beltrami operator on 0-forms. Hint: you already proved this fact in
the real case!

EXERCISE 30. Let z be a map from a topological disk M to the complex plane C. Show that the
total signed area A(z) of the region z(M) ⊂ C can be expressed as

A(z) = − i
2

∫
M

dz̄ ∧ dz.

EXERCISE 31. Assuming that z has vanishing normal derivatives along the boundary, show
that the conformal energy EC(z) can be expressed as

EC(z) = ED(z)−A(z),

where the first term is the Dirichlet energy ED(z) := 1
2 〈〈∆z, z〉〉. Hint: use the results of the last two

exercises!

EXERCISE 32. Suppose z is a piecewise linear map on a simplicial disk, i.e., we have one value
of z per vertex. Starting with the formula you derived in Exercise 30, show that the signed area of
the image z(M) can be expressed as the sum

A(z) = − i
4 ∑

eij∈E∂

z̄izj − z̄jzi.

where E∂ denotes the set of oriented boundary edges. Hint: first, use Stokes’ theorem. Next, break up
the integral into an integral over each edge. Finally, think of dz as the pushforward of the edge vectors.

CODING 8. Implement the method ConformalParameterization::buildEnergy(), which
builds a |V| × |V|matrix corresponding to the conformal energy EC. For the Dirichlet energy, you
can reuse the expression you previously derived for the discrete Laplace operator (i.e., the cotan
formula)—the only difference is that these values are now the entries of a complex matrix rather than
a real one (SparseMatrix<Complex>). For the area term, subtract the expression your derived
in Exercise 32 from the Laplacian. You may find it easiest to simply iterate over the edges of the
virtual boundary face (Mesh::boundaries.begin()).

Great. So to compute a conformal map we just have to know how to discretize the Laplacian ∆
(which already did while studying the Poisson equation) and the signed area A. However, let’s
take another look at our optimization problem—originally we said we want to solve

min
z
|| ? dz− idz||2.

There’s a glaring problem with this formulation, namely that any constant map z(p) ≡ z0 ∈ C is a
global minimizer. In other words, if we map the whole surface M to a single point z0 in the complex
plane then the conformal energy is zero. (Why? Because the derivative dz is zero everywhere!)
Intuitively, we can imagine that we’re trying to stretch out a tiny sheet of elastic material (like a
small piece of a rubber balloon) over a large region in the plane. If we don’t nail this sheet down in
enough places, it will simply collapse into a point:
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We therefore need to add some additional constraints to make the solution more “interesting.”
But which constraints should we use? If we use too few constraints, the solution may still be
uninteresting—for instance, if we just nail our elastic sheet to a single point, it can still collapse
around that point. If we use too many constraints, there may be no solution at all—in other
words, there may be no perfectly conformal map (?dz = idz) that satisfies all our constraints
simultaneously. To understand this situation better, let’s take another look at harmonic functions
and how they relate to holomorphic maps.

EXERCISE 33. Recall that a function is harmonic if it sits in the kernel of the Laplace-Beltrami
operator ∆. Show that any holomorphic map z : M→ C is harmonic. Hint: use the Cauchy-Riemann
equation and the expression for Laplace-Beltrami you derived in the homework on vertex normals.

Another way to investigate the relationship between harmonic and holomorphic functions is to
consider our optimization problem

min
z

EC(z) = 1
2 〈〈∆z, z〉〉 − A(z).

What does the minimizer look like? Well, to make things a bit easier to analyze, let’s imagine that
the map z is prescribed along ∂M, i.e., we “nail down” all the points along the boundary. From
our discussion of vertex normals, you may recall that the signed area is also now fixed, since
it can be expressed as a boundary integral. In other words, if we pin down the boundary then
A(z) evaluates to the same constant for all maps z, and so we need only consider the map that
minimizes the Dirichlet energy ED(z) = 1

2 〈〈∆z, z〉〉. In particular, since ED is positive and quadratic,
its minimum will be found wherever its gradient vanishes, i.e., wherever

∆z = 0.

In conclusion: the minimizer of conformal energy subject to fixed boundary conditions is harmonic.
Is it also holomorphic? In other words, does it preserve angles? Sadly, no: even though every
conformal map is harmonic, not every harmonic map is conformal.

EXERCISE 34. Let M be a topological disk and let ϕ : M→ C be a harmonic function (∆ϕ = 0)
with zero imaginary part, i.e., Im(z) = 0. Give a simple geometric reason for why ϕ is not a
holomorphic map. (You answer should involve prose only—no direct calculations!)
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harmonic

conformal

From a practical perspective, this observation means that we can’t just haphazardly nail down
pieces of our rubber sheet and hope for the best—in general, a harmonic map will not preserve
angles (as illustrated above, where we pin the boundary to a given rectangle). Instead, let’s consider
the following optimization problem:

min
z

EC(z)
s.t. ||z|| = 1,

〈〈z,1〉〉 = 0,
(1)

where 1 denotes the constant function z(p) ≡ 1, i.e., the function equal to “1” at every point. What
do these constraints mean geometrically? Well, suppose A is the total area of the surface f (M).
Then the second constraint is equivalent to

1
A

∫
M

zdA = 0,

i.e., the average value of the solution is zero. Equivalently: the solution must be centered around
the origin. The first constraint makes sure that the solution doesn’t collapse around the origin, i.e.,
in order for the norm to be nonzero, there must be at least one nonzero point z(p) 6= 0. Together,
these conditions are sort of the “weakest” things we can ask for: we don’t know where we want
our map to go, but we sure don’t want it to collapse!

7.5. Eigenvectors, Eigenvalues, and Optimization

Ok, next question: how do we actually solve an optimization problem like Equation 1? At first
glance it might look rather nasty and nonlinear, but in fact problems of this form turn out to be
some of the nicest ones we can hope to solve. To study the situation in more detail, let’s revisit
an important topic in linear algebra: eigenvalue problems. Often, eigenvectors and eigenvalues are
introduced in the context of real, finite-dimensional matrices A ∈ Rn×n—in particular, we say that
a unit vector e ∈ Rn is an eigenvector of A if

Ae = λe
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for some constant λ ∈ R. As with all things in life, it’s better if we can attach some kind of geometric
meaning to this statement. One way to visualize a linear map is to apply it to a bunch of vectors
in space and see how they change. For instance, suppose we apply a matrix A ∈ R3×3 to all the
unit vectors in R3, i.e., the unit sphere. What happens? For one thing, any point on the sphere
corresponding to an eigenvector ei will grow or shrink by the associated factor λi, but remain
pointing in the same direction. What about the rest of the sphere? Well, if A is a symmetric matrix
(AT = A), then the three corresponding eigenvectors e1, e2, e3 are mutually orthogonal (as you will
prove in just a minute!). We can therefore visualize a symmetric linear map as a “squishing” of a
sphere along these three axes, where the amount of squish is determined by the magnitude of the
eigenvalues λi:

e3 λ3e3
e2

λ2e2

e1

λ1e1

This picture provides a fairly decent mental image not only for real symmetric matrices, but more
generally for any self-adjoint linear operator. A linear operator is just any map from one vector space
to another that is, well, linear! Earlier, for instance, we looked at the Laplace operator ∆, which
(roughly speaking) maps functions to the sum of their second derivatives. Functions form a vector
space (you can add two functions, subtract them, multiply them by scalars, etc.), and the Laplacian
∆ is said to be linear since it preserves basic vector space operations, e.g.,

∆(aφ + bψ) = a∆φ + b∆ψ

for any pair of functions φ, ψ and scalars a, b ∈ R. In the context of general linear operators, the
idea of eigenvectors and eigenvalues is essentially unchanged: an eigenfunction of a linear operator
is any function that changes only by a scalar multiple when we hit it with the operator. For instance,
the constant function 1 is an eigenfunction of the Laplacian with associated eigenvalue λ = 0, since
∆1 = 0 = 01. In the next few exercises we’ll look at some important properties of linear operators
and their eigenfunctions, which will help us develop algorithms for conformal maps (and other
geometry processing problems).

EXERCISE 35. Let A be a linear operator and let 〈〈·, ·〉〉 be a Hermitian inner product. The adjoint
of A, denoted by A∗ is the unique linear operator satisfying

〈〈Ax, y〉〉 = 〈〈x, A∗y〉〉

for all vectors x, y. An operator is called self-adjoint if A∗ = A. Show that all the eigenvalues of a
self-adjoint operator are real.

EXERCISE 36. Let A be a self-adjoint linear operator. Show that any two eigenfunctions ei, ej of
A with distinct eigenvalues λi, λj must be orthogonal, i.e., 〈〈ei, ej〉〉 = 0.
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If you’ve had much experience with real symmetric matrices, these facts should look familiar:
eigenvalues are real, and eigenvectors are orthogonal. We’ve glossed over a lot of important
points here—for instance, why should eigenfunctions always exist? But the main point is that if an
operator is “nice enough” (e.g., the Laplacian ∆ on a compact surface) it will indeed behave much
like a good old-fashioned matrix. This relationship is particularly valuable in geometry processing,
where we would ultimately like to approximate continuous, infinite-dimensional linear operators
with discrete, finite-dimensional matrices which we can actually store on our computer. For the
moment, this way of thinking will help us develop an algorithm for solving our optimization
problem above.

EXERCISE 37. Let A ∈ Rn×n be a real symmetric positive-definite matrix, i.e., xTAx ≥ 0 for all x.
Show that a solution to the optimization problem

min
x

xTAx

s.t. ||x|| = 1

is given by any solution to the eigenvalue problem

Ax = λx,

where x is a unit eigenfunction and λ ∈ R is the smallest eigenvalue of A. Moreover, show that
the minimal value itself is the eigenvalue λ. Hint: note that the constraint ||x|| = 1 is equivalent to the
constraint 〈〈x, x〉〉 = 1 and use the method of Lagrange multipliers.

In other words, our optimization problem (Equation 1) reduces to a standard eigenvalue
problem. So, how do we solve an eigenvalue problem? In general, there are many fascinating
eigenvalue algorithms with fancy names and very, very complicated descriptions. Fortunately for
us, when looking for just the extreme eigenvalues of a matrix (i.e., the biggest or the smallest) we
can often do just as well by using the stupidest algorithm imaginable. That algorithm is called the
power method.

EXERCISE 38. The Power Method. Let A ∈ Rn×n be a real symmetric matrix with distinct,
nonzero eigenvalues 0 < λ1, . . . , λn, and corresponding eigenvectors x1, . . . , xn. Consider the
iterative procedure

y← Ay,

i.e., we just repeatedly hit the vector y with the matrix A. Show that the unit vector y/|y| converges to
the eigenvector xn corresponding to the largest eigenvalue λn, as long as y is not initially orthogonal
to xn. Hint: express y as a linear combination of the eigenvectors.

To keep things simple, we made the assumption that A has distinct, nonzero eigenvalues, but
in general the same principle applies: hit a vector over and over again with a matrix and you’ll
end up with a vector parallel to the “largest” eigenvector, i.e., the eigenvector corresponding to the
largest eigenvalue. (How far can you generalize your proof?) Geometrically, we can imagine that
our unit sphere is gets squashed more and more until it ends up looking like a thin spindle along
the direction of the largest eigenvector:
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e1 e1

Notice that this scheme gives us the largest eigenvalue (and its associated eigenvector). To find
the smallest eigenvalue we need only make a slight modification.

EXERCISE 39. Let e be an eigenfunction of an invertible linear operator A, with associated
eigenvalue λ. Show that

A−1e = 1
λ e,

i.e., show that e is also an eigenfunction of the inverse, but has the reciprocal eigenvalue. Explain
why this relationship makes sense geometrically, in light of the picture at the beginning of this
section.

To get the smallest eigenvalue, then, we can simply apply the power method using the inverse
matrix A−1 instead of the original matrix A. (Why?) In practice, however, we don’t want to explicitly
compute the inverse matrix A−1, for two very important reasons:

(1) computing the inverse of a matrix is, in general, numerically unstable and,
(2) even very sparse matrices can have very dense inverses (e.g., a sparse matrix that takes up
∼100MB of memory might have an inverse that takes up ∼10GB of memory!).

Instead of inverting A and iteratively applying it to some initial vector, we can just solve a linear
system at each step:

Algorithm 1: THE INVERSE POWER METHOD

Require: Initial guess y0.
1: while Residual(A, yi−1) > ε do
2: Solve Ayi = yi−1
3: yi ← yi/|yi|
4: end while

The function “Residual” measures how far our current guess y is from being an eigenvector.
Recalling that eTAe = λ for any eigenvector e and eigenvalue λ (Exercise 37), we could write this
function as

Residual(A, y) := Ay− (yTAy)y,
being careful to note that y is a unit vector.

CODING 9. Implement the routine

smallestEig( const SparseMatrix<T>& A, const DenseMatrix& x ),
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which can be found in src/SparseMatrix.inl. To compute the residual, you may call the
subroutine residual(A,y).

CODING 10. Implement the routine

residual( const SparseMatrix<T>& A, const DenseMatrix& x ),

which can be found in src/SparseMatrix.inl.

We now have a concrete procedure for solving eigenvalue problems. Can we use it to compute
a conformal map? Well, remember that our optimization problem (Equation ??) involves two
constraints: we want our solution to have unit norm ||z|| = 1, and we want it to be orthogonal
to any constant function (〈〈z,1〉〉 = 0). The first constraint is already enforced by normalizing the
iterate yi after each step (by the way, why is this projection legitimate?). The second constraint is a
simple modification to our existing algorithm.

CODING 11. Modify the routine

smallestEig( const SparseMatrix<T>& A, const DenseMatrix& x )

to enforce the constraint 〈y,1〉 = 0 by simply subtracting the mean of y after each application of A,
prior to normalization.

CODING 12. Implement the routine

ConformalParameterization::update(),

which computes a conformal parameterization of a simplicial disk by computing the first non-
trivial eigenvector of the conformal energy. This routine should call your previous two routines,
buildEnergy() and smallestEig(). It should also copy the resulting values from the eigen-
vector to the texture coordinates Vertex::texcoord associated with each vertex. (Once this
method has been implemented, you should be able to successfully flatten meshes from the Viewer.)

7.5.1. (Smallest) Eigenvalue Problems are Easy! As mentioned above, there are a lot of eigen-
value algorithms out there—many of which are far more sophisticated than the simple iterative
scheme we describe above. Can’t we do better by using something “more advanced?” Believe
it or not, for many standard geometry processing tasks (such as conformal parameterzation) the
answer is, “probably not!” At least, not if we make a slight modification to our implementation of
the (inverse) power method.

In particular, our current implementation of the power method solves a linear system for
each iteration. However, we can save an enormous amount of work by taking advantage of
prefactorization. Roughly speaking, prefactorization decomposes our initial matrix A into a product
of matrices that allow us to very quickly compute the solution to a system of the form Ax = b. (For
instance, it is always possible to write a square matrix A as the product of a lower triangular matrix
L and an upper triangular matrix U, after which point we can quickly solve a system by applying
forward- and back-substitution.) From a practical perspective, a prefactorization allows us to
quickly solve a sequence of linear systems where the matrix A stays fixed but the right-hand side b
changes (Ax = b1, Ax = b2, . . . ). Of course, “a sequence of systems with a changing right-hand side”
sounds a lot like the (inverse) power method!
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CODING 13. Prefactorization. Modify your implementation of the inverse power method
to take advantage of prefactorization. In particular, you can create a SparseFactor object and
prefactor the matrix A via the method SparseFactor::build(). To solve a linear system using
this factorization, use the method backsolve() in SparseMatrix.h.

There are two important rules of thumb about matrix prefactorization in the context of geometry
processing (at least when it comes to nice sparse operators like cotan-Laplace):

(1) factoring a matrix costs about as much as solving a single linear system, and
(2) the cost of backsubstitution is almost negligible compared to factorization.

The main outcome, then, is that (at least for the types of matrices we’ve considered in these notes)
computing the smallest eigenvector via the power method costs about as much as solving a single
linear system. In fact, in our code framework all linear systems are solved by first computing a
prefactorization, since (at least these days. . . ) prefactored or direct linear solvers tend to be the most
efficient way to solve a sparse linear system—especially if you don’t have a good preconditioner.
They also tend to be much more reliable than standard iterative methods like conjugate gradient,
which may be very slow to converge for, e.g., poor triangulations. An important exception is when
working with very large meshes, where matrix factors may not be able to fit into memory—in this
case, a simple iterative solver may be your best bet. In general, understanding the tradeoffs among
different linear solvers (and other numerical tools) can make or break the effectiveness of a given
geometry processing algorithm—know them well!



CHAPTER 8

Vector Field Decomposition and Design

In this chapter we look at several tools for working with tangent vector fields on surfaces. A
tangent vector field consists of vectors lying flat along the surface—for instance, the hair on the
back of your cat or the direction of the wind on the surface of the Earth. One way to describe a
vector field is to simply specify each vector individually. This process is quite tedious, however,
and in practice there are much more convenient ways to describe a vector field. In this assignment
we’re going to look at two different but closely related descriptions. First, we’ll see how any tangent
vector field can be expressed in terms of a scalar potential, vector potential, and a harmonic component,
using a tool called Helmholtz-Hodge decomposition. Next, we’ll see how a vector field can instead be
expressed purely in terms of its singularities. Finally, we’ll tie these two perspectives together and
show how Helmholtz-Hodge decomposition and singularity-based editing can be combined into a
highly effective tool for vector field design.

Our discussion of vector fields is closely related to the discussion of homology that we initiated
while studying loops on surfaces. Remember that, very roughly speaking, homology is a tool that
helps us detect certain “interesting features” of a space—for example, the homology generators
of a surface were noncontractible loops that wrap around each handle. In the context of vector
fields, we’ll see a very closely related notion of de Rham cohomology, which helps us detect fields
that also “wrap around” in a similar way. Interestingly enough, these two ideas turn out to be
nearly identical in the discrete setting (the only difference is a matrix transpose!).

98
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8.1. Hodge Decomposition

8.1.1. Breaking Up is Easy to Do: Short Exact Sequences. The most important tools we’ll
need have very little to do with geometry or topology—just good old fashioned linear algebra. In
particular, we’re going to show that any short exact sequence of vector spaces yields a decomposition
of the space “in the middle” into three natural pieces. This perspective will ultimately help us make
sense of objects in both the continuous and discrete setting.

First, let’s recall some important ideas from linear algebra. In particular, let A : U → V be a
linear map between vector spaces U and V, and let 〈〈, 〉〉 be an inner product on V. The adjoint A∗
of A is the unique linear operator A∗ : V → U such that

〈〈Au, v〉〉 = 〈〈u, A∗v〉〉
for all vectors u ∈ U and v ∈ V. For instance, in the case where the operator A can be represented
by a real matrix, its adjoint A∗ is the matrix transpose. There are a few natural spaces associated
with any linear operator. One is the image, consisting of all vectors in V that can be obtained by
applying A to some vector in U:

im(A) := {v ∈ V|Au = v, u ∈ U}.
A complementary idea is the cokernel, consisting of all vectors in V that cannot be obtained as the
image of some vector in U:

coker(A) := im(A)⊥.

Here the symbol ⊥ denotes the orthogonal complement, i.e., all vectors in V orthogonal to im(A).
Finally, we have the kernel, consisting of all vectors u that get mapped to the trivial vector 0 ∈ V:

ker(A) := {u ∈ U|Au = 0}.

EXERCISE 40. Show that the cokernel of a linear operator is the same as the kernel of its adjoint.

In the context of surfaces, we found “interesting” loops (i.e., the noncontractible ones) by
looking for subsets that had an empty boundary but were not themselves the boundary of a larger
set. This basic idea can be applied in lots of other settings—in particular, consider a sequence of
vector spaces U, V, W connected by two maps A : U → V and B : V →W. A common shorthand
for such a sequence is

U A−→ V B−→W.

We say that this sequence is exact if
B ◦ A = 0,

i.e., if any vector mapped into V by A subsequently gets “killed” when we apply B. An interesting
question we can ask, then, is, “are there additional elements of V that get killed by B for some other
reason?” As with loops on surfaces, answering this question helps us unearth interesting stuff
about the space V.

EXERCISE 41. The intersection ∩ of two linear subspaces is the collection of all vectors common
to both of them. Show that

im(A) ∩ im(B∗) = 0,

for any short exact sequence U A−→ V B−→W. In other words, show that the maps A and B∗ don’t
produce any common vectors except for the zero vector. Hint: use the exactness condition B ◦ A = 0
and the result of the previous exercise.
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Finally, we get to the punchline. If things are starting to feel a bit abstract at this point, don’t
dismay! The meaning of this decomposition will become quite clear in the next section, when we
apply it to tangent vector fields on surfaces.

V

Z

im(A) im(B∗)

EXERCISE 42. Show that any vector v ∈ V can be expressed as

v = Au + B∗w + z

for some triple of vectors u ∈ U, w ∈ W and z ∈ V such that A∗z = 0 and Bz = 0. Equivalently,
show that the vector space U can be decomposed into the three orthogonal subspaces im(A),
im(B∗), and Z := ker(B) \ im(A), where the backslash denotes the set of all vectors in ker(B) that
are not in im(A) (excluding the origin). Hint: start with the two pieces of V you considered in the
previous exercise, and consider what the rest looks like. It may be helpful to recall some basic facts about
unions, intersection, and complements, e.g., (V1 ∪V2)⊥ = V⊥1 ∩V⊥2 .
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8.1.2. Helmholtz-Hodge Decomposition.

divergence-free
(coexact) curl-free

(exact)

harmonic

In any flow, certain features naturally catch the eye: wind swirling around the Great Red Spot
on Jupiter, or water being sucked down into a mysterious abyss through the bathtub drain. Many
of these features can be given a precise mathematical description using the decomposition we
studied in the previous section. Consider, for instance, the vector field depicted above. Visually, we
experience three features: a swirling spot, a sucking sink, and a steady flow around a lazy river,
each of which is quite distinct. But can we apply the same kind of decomposition to any vector
field? To answer this question, let’s look at an exact sequence called the de Rham complex, which
shows up again and again in exterior calculus.

EXERCISE 43. Let d be the exterior derivative on k-forms and let δ := ?d? be the associated
codifferential, acting on k + 1-forms. Assuming that the domain M has no boundary, show that d
and δ are adjoint, i.e., show that

〈〈dα, β〉〉 = 〈〈α, δβ〉〉

for any k-form α and (k + 1)-form β. Hint: Stokes’ theorem!

EXERCISE 44. Helmholtz-Hodge Decomposition. Let Ωk denote the space of real-valued k-
forms on a closed compact n-dimensional manifold M, equipped with its usual L2 inner product.
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A de Rham complex is a sequence 1

Ωk−1 d−→ Ωk d−→ Ωk+1.

Any such sequence is exact: if you recall, d ◦ d = 0 was one of the defining properties of the exterior
derivative d. Show that any k-form ω can be expressed as

ω = dα + δβ + γ

for some (k− 1)-form α, k + 1-form β, and k-form γ ∈ Ωk such that dγ = 0 and δγ = 0. Hint: apply
the results of Exercises 42 and 43.

The three pieces dα, δβ, and γ show up often enough in exterior calculus that they are given
special names. In particular, a k-form is

• exact if it can be expressed as the image of the exterior derivative (e.g., dα),
• coexact if it can be expressed as the image of the codifferential (e.g., δβ), and
• harmonic if it is in the kernel of both d and δ—in other words, a harmonic form is both

closed (dγ = 0) and co-closed (δγ = 0).

We can gain some valuable intuition about these conditions by again considering the special case of
surfaces. Recall that dφ = (∇φ)[, i.e., the exterior derivative of a 0-form φ looks like its gradient. In
a similar vein, we have the following fact.

EXERCISE 45. Let β be a 2-form on a surface M. As with any volume form, we can think of β as
the Hodge dual of some 0-form φ, i.e., β = ?φ. Show that

δβ = ((∇u)⊥)[,

i.e., the codifferential of a 2-form looks like the gradient, rotated by 90 degrees in the counter-
clockwise direction. Hint: on a surface, what does the Hodge star on 1-forms look like? Remember our
discussion of conformal structure.

Therefore, in the special case of surfaces we can write any vector field X as the sum of a curl-free
∇φ, a divergence-free part (∇u)⊥, and a harmonic part Y which is both curl- and divergence-free. In
other words,

X = ∇φ + (∇u)⊥ + Y,

where φ and u are scalar functions and Y is a vector field. The corresponding de Rham complex
can also be expressed in terms of vector calculus, namely

C∞ ∇−→ X
∇×−−→ C∞

where C∞ denotes the space of smooth, real-valued functions on M, and X denotes the space of
smooth vector fields.

With this interpretation in mind, we can visualize the Hodge decomposition of a 1-form on
a surface via the two functions α and ?β, which are sometimes called a “scalar potential” and a
“vector potential,” respectively:

1Most people use the term “de Rham complex” to refer to the entire sequence going from 0-forms to n-forms, but for our
purposes this little piece will suffice.
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d

α β

δ

dα δβγ

+ +

But wait a minute—what’s the corresponding picture for the harmonic component? Actually, the
absence of a picture is the whole point! The harmonic component is precisely the piece that cannot
be expressed in terms of some “potential.” In this example, for instance, any such potential would
have to keep increasing monotonically as we walk around the torus. Of course, no periodic function
can increase indefinitely, unless your name happens to be M.C. Escher:
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EXERCISE 46. Above, we said that a k-form γ is harmonic if it is both closed (dγ = 0) and
co-closed (δγ = 0). Some authors instead define harmonic k-forms as elements of the kernel of the
k-form Laplacian ∆ := dδ + δd. Show that these two definitions are equivalent, i.e., show that γ is
harmonic if and only if

∆γ = 0.

8.1.3. Computing a Decomposition. So far our discussion of Helmholtz-Hodge decomposi-
tion has been very ephemeral: there exists a decomposition of any k-form into its three constituent
pieces. Unfortunately, although compilers are quite good at interpreting “if,” “while,” and “for
each” statements, they aren’t particulary adept at understanding “there exists” statements! So,
how do we actually compute a decomposition of real data? Fortunately, we’ve already written
everything down in terms of exterior calculus, which will make the translation to the discrete
setting straightforward.

EXERCISE 47. Let A be a linear operator and let A∗ be its adjoint. Show that

im(A) ∩ ker(A∗) = 0,

i.e., any vector in the image of A is not in the kernel of A∗.

EXERCISE 48. Let ω be a real-valued k-form on a closed compact domain. From Exercise 44
we know that ω can be expressed as ω = dα + δβ + γ for some k− 1-form α, k + 1-form β, and
harmonic k-form γ. Show that α and β are solutions to the linear equations

δdα = δω

and
dδβ = dω,

respectively. Hint: as always, if you get stuck, think about what you did in the previous exercise!

A practical procedure for decomposing a vector field is therefore:

Algorithm 2: HELMHOLTZ-HODGE DECOMPOSITION

1: Solve δdα = δω
2: Solve dδβ = dω
3: γ← ω− dα− dβ

In other words, we compute the two potentials, then see what remains. (By the way, can you
apply this procedure to any short exact sequence, or do we need some special structure from the de
Rham complex?) The nice thing about this algorithm is that we can implement it using the discrete
differential operators we’ve already looked at—no additional discretization required!

To be a bit more explicit, let d0 ∈ R|E|×|V| and d1 ∈ R|F|×|E| be the discrete exterior derivatives
on 0- and 1-forms, respectively, where V, E, and F, denote the set of vertices, edges, and faces in
a triangulated surface. Also let ?0 ∈ R|V|×|V|, ?1 ∈ R|E|×|E| and ?2 ∈ R|F|×|F| denote the diagonal
Hodge star matrices computed using the circumcentric dual. (At this point you may find it useful
to review the earlier material on discrete exterior calculus.) The two systems above can then be
discretized as

?−1
0 dT

0 ?1 d0α = ?−1
0 dT

0 ?1 ω



8.1. HODGE DECOMPOSITION 105

and
d1 ?1 dT

1 ?2 β = d1ω,

where α ∈ R|V| and β ∈ R|F| are encoded as a single value per vertex and per face, respectively.
Computationally, it is often more efficient if we can solve an equivalent symmetric system. In the
case of the first system we can simply remove the factor star−1

0 from both sides, yielding

dT
0 ?1 d0α = dT

0 ?1 ω.

This system is also positive-semidefinite—independent of the quality of the triangulation—since
the operator dT

0 ?1 d0 on the left-hand side is simply the restriction of the positive-definite Laplace-
Beltrami operator ∆ to the space of piecewise linear functions (see our discussion of the Poisson
equation). Therefore, we can always solve for the potential α using a highly efficient numerical
method like sparse Cholesky factorization—this method is implemented in our code framework
via the routine solvePositiveDefinite. As for the second equation, consider the change of
variables β̃ := ?2β. We can then solve the symmetric system

d1 ?1 dT
1 β̃ = d1ω

and recover the final solution by computing β = ?−1
2 β̃. (This final step comes at virtually no

additional cost since the matrix ?2 is diagonal—the inverse simply divides each entry of β̃ by a
known constant.) Unlike the first equation, this system is not always positive-semidefinite. A
sufficient (though not actually necessary) condition for positive-definiteness is that the entries of
the 1-form Hodge star ?1 are positive. In general, however, this condition will not be met, but
we can still efficiently compute a solution using LU factorization, which is implemented in our
code framework via the method solveSquare. (An extremely rough rule of thumb is that LU
factorization is about twice as costly as Cholesky, since it involves two distinct factors.)

CODING 14. Implement the methods
void HodgeStar0Form<T> :: build()
void HodgeStar1Form<T> :: build()
void HodgeStar1Form<T> :: build()
in DiscreteExteriorCalculus.inl, which build the diagonal Hodge star matrices ?0, ?1, and
?2, respectively. Notice that these methods are templated on a type T, which can be Real, Complex,
or Quaternion. In all cases, however, the matrices should have real entries (i.e., the imaginary
parts should be zero). This setup will allow you to solve a variety of different geometry processing
problems using the same collection of routines.

CODING 15. Implement the methods
void ExteriorDerivative0Form<T> :: build()
void ExteriorDerivative1Form<T> :: build()
in DiscreteExteriorCalculus.inl, which build the discrete exterior derivatives d0 and d1
on 0-forms and 1-forms, respectively. Check that these two matrices have been properly built by
computing their product and verifying that the resulting matrix is zero.

CODING 16. Implement the methods
HodgeDecomposition :: computeZeroFormPotential()
HodgeDecomposition :: computeTwoFormPotential()
HodgeDecomposition :: extractHarmonicPart()
using the matrices you built in the last two exercises. You should now be able to visualize the three
components of the provided tangent vector fields from the Viewer. Compare the speed of solving
the two linear systems with the generic routine solve() versus the more specialized routines
solvePositiveDefinite() and solveSquare(), respectively.
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One final question: why should this procedure work in the discrete setting? In other words,
how do we know that any discrete vector field can be decomposed as in the smooth case? Well,
as you should have verified in Coding 15, the sequence of vector spaces corresponding to the
discrete exterior derivatives d0 and d1 is exact. Therefore, all of our previous results about Hodge
decomposition still apply! In other words, it makes no difference (at least not in this case) whether
we work with infinite-dimensional function spaces or finite-dimensional vector spaces. Ideally,
this kind of behavior is exactly the kind of thing we want to capture in the discrete setting: our
discretization should preserve the most essential structural properties of a smooth theory, so that
we can directly apply all the same theorems and results without doing any additional work.

8.2. Homology Generators and Harmonic Bases

When working with surfaces of nontrivial topology, we often need to be able to compute two
things: generators for the first homology group, and bases for the space of harmonic 1-forms. Loosely
speaking, homology generators represent all the “basic types” of nontrivial loops on a surface. For
instance, on a torus we can find two homology generators: a loop going around the inner radius,
and a loop going around the outer radius—more generally, a closed surface of genus g will have
2g generators. Likewise, we will have 2g distinct bases for the harmonic 1-forms, each circulating
around a different handle in a different direction (see for example the harmonic component we
extracted above via Helmholtz-Hodge decomposition). People have come up with lots of funky
schemes for computing these objects on triangle meshes; here we describe the two methods that
are perhaps simplest and most efficient. In fact, these methods are closely related: we first compute
a collection of homology generators, then use these generators to construct a basis for harmonic
1-forms.

8.2.1. Homology Generators. The algorithm for finding generators, called tree-cotree decompo-
sition [Epp03, EW05], depends on nothing more than the most elementary graph algorithms. If
you don’t remember anything about graphs, here’s a quick and dirty reminder. A graph is a set
of vertices V and a collection of edges E which connect these vertices, i.e., each edge eij ∈ E is
an unordered pair {vi, vj} of distinct vertices vi, vj ∈ V. For example, the vertices and edges of a
simplicial surface describe a graph. The faces and dual edges also describe a graph. A subgraph is
a subset of a graph that is also a graph. A graph is connected if every vertex can be reached from
every other vertex along some sequence of edges. A tree is a connected graph containing no cycles.
If we wanted to be a bit more geometric (we are studying geometry, after all), we could say that
a tree is a simplicial 1-complex that is both connected and simply-connected. If most of this stuff
sounds unfamiliar to you, go read about graphs! They’re important. And fun.

To find a set of generators, we’ll need to compute a couple spanning trees. A spanning tree is
just a tree touching all the vertices of a given graph. How do we compute a spanning tree? If
you’ve studied graphs before, you might vaguely recall someone mumbling something like, “Prim’s
algorithm. . . Kruskal’s algorithm. . . O(n log n). . . ” These two algorithms compute minimal spanning
trees, i.e., spanning trees with minimum total edges weight. We don’t care about edge weight, ergo,
we don’t care about Prim or Kruskal (sorry guys). Actually, we can use a much simpler linear time
algorithm to get a spanning tree:
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Algorithm 3: X-FIRST SEARCH

Put any vertex in a bag. Until this bag is empty, pull out a vertex, mark it as visited, and put all unvisited
neighbors in the bag. Every time you put a neighbor in the bag, add the corresponding edge to the tree.

Pretty easy. A “bag” here could be a stack, a queue, or. . . whatever. In other words, you could
do depth-first search. Or breadth-first search. Or anything-first search. The point is, we just need
to visit all the vertices2. Oh yeah, and we’ll call the initial vertex the root. Once we know how to
compute a spanning tree, finding a collection of generators on a simplicial surface is also easy:

Algorithm 4: TREE-COTREE

1: Build a spanning tree T of primal edges.
2: Build a spanning tree T? of dual edges that do not cross edges in T.
3: For each dual edge e?ij that is neither contained in T? nor crossed by T, follow both of its

endpoints back to the root of T?. The resulting loop is a generator.

Overall, the algorithm will produce 2g generating loops. Instead of writing a proof, let’s just
get a sense for how this algorithm works in practice:

EXERCISE 49. Recall that the fundamental polygon of the torus is just a square with opposite sides
glued together. Consider the following graph on the torus:

Run the tree-cotree algorithm by hand, i.e., draw a primal and dual spanning tree on this graph.
How many generators did you get? Hint: be careful about corners and edges!

2This discussion inspired by Jeff.
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CODING 17. Implement the methods
TreeCotree::buildPrimalSpanningTree(),
TreeCotree::buildDualSpanningCoTree(), and
TreeCotree::buildCycles(),
which can be found in TreeCotree.h.

8.2.2. Harmonic Bases. Once we have the homology generators, the harmonic 1-form bases
can also be found using a rather simple procedure [TACSD06]. In fact, we can take advantage of
our newly-acquired knowledge of Hodge decomposition. Suppose we start out with a 1-form ω
that is closed but not exact. From Exercise 44, we know that ω must then have the form

ω = dα + γ

for some 0-form α and harmonic 1-form γ. Using our procedure for Helmholtz-Hodge decomposi-
tion (Algorithm 8.1.3) we can easily extract just the harmonic part. In fact, since ω has no coexact
component we need only solve the first equation δdα = δω, or equivalently

∆α = δω.

In other words, just a standard scalar Poisson equation. We can then extract the harmonic compo-
nent via γ = ω− dα as before.

Sounds pretty good, but where did ω come from in the first place? In other words, how do we
construct a 1-form that is closed but not exact? Well, once we have our generators, it’s quite easy.
For every edge crossing from the “left” of the generator to the “right,” set ω to +1; for every edge
crossing from the “right” to the “left,” set ω to −1:

-1

+1

-1

+1

-1

+1

-1

+1

For all remaining edges, set ω to zero. The resulting 1-form is exact. Why? Well, remember that
the discrete exterior derviative on 1-forms is just the (oriented) sum of edge values around each
triangle. Therefore, in each triangle crossed by our generator, we get 1− 1 + 0 = 0:
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+10

-1

(In all other triangles we get 0 + 0 + 0 = 0.) Ok, so this particular choice of ω is closed. But is it
also exact?

EXERCISE 50. Show that the 1-form ω described above is not exact, i.e., it has a nonzero
harmonic component. Hint: Stokes’ theorem!

CODING 18. Implement the method
HarmonicBases::buildClosedPrimalOneForm(), which constructs a closed discrete primal
1-form corresponding to a given homology generator. Be careful about orientation!

If you successfully completed Exercise 50, you probably noticed that ω integrates to a nonzero
value along the corresponding generator `. Likewise, it’s not hard to verify that ω vanishes when
integrated along any other generator. As a result, we can use this procedure to construct a basis for
the harmonic 1-forms on a triangulated surface.

EXERCISE 51. Let `1, . . . , `2g be a collection of homology generators, constructed as described
in Section ??. Let ω1, . . . , ω1 be the corresponding closed 1-forms, and let γ1, . . . , γn be the corre-
sponding harmonic components. Show that the γi are mutually orthogonal.

Algorithm 5: HARMONIC-BASIS

1: Compute homology generators `1, . . . , `n using TREE-COTREE.
2: for i = 1, . . . , n do
3: Construct a closed 1-form ωi corresponding to `1.
4: Solve ∆αi = δωi.
5: γi ← ωi − dαi
6: end for

As discussed in the chapter on parameterization, we can greatly accelerate the process by
prefactoring the Laplace operator. Since the cost of prefactorization is typically far greater than the
cost of backsubstitution (and since TREE-COTREE amounts to a simple linear traversal), the overall
cost of this algorithm is roughly the same as the cost of solving a single Poisson equation.

CODING 19. Implement the method HarmonicBases::build() which implements the
algorithm HARMONIC-BASIS described above. You should prefactor the Laplacian using a
SparseFactor object, and solve the Poisson equations via backsolvePositiveDefinite().
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8.3. Connections and Parallel Transport

In discrete differential geometry, there are often many ways to discretize a particular smooth
object. As discussed earlier, however, the hope is that we can discretize all the objects in a given
theory so that relationships from the smooth theory still hold in the discrete picture. For instance,
when we looked at Hodge decomposition we discretized the exterior derivative and the Hodge
star in such a way that the Hodge decomposition has an identical expression in both the smooth
and discrete world: ω = dα + δβ + γ. In the case of surfaces, we represented a vector field as a
discrete 1-form, i.e., a number associated with each oriented edge giving the circulation along (or
flux through) that edge.

In this section we’re going to adopt a different perspective based on the theory of connections
and parallel transport. This time around, we’re going to represent a vector field as an angle-valued
dual 0-form. More plainly, we’re going to store an angle on each face that gives the direction of
the field. Note that this representation ignores magnitude, so what we’re really working with is a
direction field. Before going too much further with the discrete theory, though, let’s first talk about
the smooth objects we want to discretize!

8.3.1. Parallel Transport.

u

u

θ

θ
u′

u′

Suppose we have a tangent vector u = df(X) sitting on an immersed surface f (M). How do
we move from one point of the surface to another while preserving the direction of u? If f (M) is
completely flat (like the plane itself) then the most natural thing is to slide u from one point to the
other along a straight path—keeping the angle with some reference direction fixed—to obtain a
new vector u′. This process is called parallel transport, and the tangent vectors u and u′ are, as usual,
said to be parallel. Parallel transport on a curved surface is a bit trickier. If we keep u pointing in
the same direction, then it ceases to be tangent and now sticks out the side. On the other hand, if
we instead keep u flat against the surface then we no longer have a consistent, global reference
direction. Overall, the notion of “same direction” is not very well-defined!
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u

f (p) f (q)

Ppq

v

Still, having some notion of “same direction” could be very convenient in a lot of situations.
So, rather than looking for some “natural” definition, let’s define for ourselves what it means to
be parallel! Ok, but how do we do that? One idea is to explicitly specify a parallel transport map
Ppq : Tp M→ Tq M that immediately “teleports” vectors from the tangent plane Tp M to the tangent
plane Tq M. We could then say that—by definition—two vectors X ∈ Tp M and Y ∈ Tq M are parallel
if Ppq(X) = Y. (Or equivalently, if the embedded vector u := df(X) is the same as v := df(Y)).
Unfortunately we’d have to specify this map for every pair of points p, q on our surface. Sounds like
a lot of work! But we’re on the right track.

An alternative is to describe what it means for vectors to be parallel locally. In other words, how
must a vector change as we move along the surface in order to remain parallel? One way to encode
this information is via a connection 1-form, which we can express as a linear map ω : TM → TM,
i.e., given a direction of motion Z, the quantity ω(Z) tells us how much a vector X must change in
order to remain parallel. (The reason ω is called a “connection” is because it tells us how to connect
nearby tangent spaces, i.e., how to identify tangent vectors in one space with vectors in a “nearby”
space.) To get any more formal than this takes a bit of work—for now let’s just make sure we have
a solid geometric intuition, which should serve us well in the discrete setting:

EXERCISE 52. Take a stiff piece of cardboard and draw an arrow on it. Now roll it around on
the surface of a basketball for a while. In effect, you’re defining a map between the tangent plane
where you first set down the cardboard and the tangent plane at the current location. The rolling
and twisting motion you apply at any given moment effectively defines a connection (at least along
a particular path). Try the following experiment. Starting at some clearly marked initial point, be
very careful to note which direction your arrow points. Now roll the cardboard around for a while,
eventually bringing it back to the initial point. Does the arrow point in the same direction as it did
initially? What happens if you take a different path?

The phenomenon you’ve (hopefully) just observed is something called the holonomy of the
connection, i.e., the failure of the connection to preserve the direction of a vector as we go around a
closed loop. We’ll say a bit more about holonomy in just a minute.

8.3.2. Discrete Connections.

translate rotate
foldunfold
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How should we specify a connection in the discrete setting? Well, for a given a pair of triangles
(i, j), we can imagine rigidly unfolding them the plane, translating a vector from one to the other,
applying a rotation by some small angle θij, and then rigidly “refolding” these triangles into their
initial configuration, as illustrated above. In other words, we can describe a connection on a triangle
mesh via a single angle ϕij ∈ R for each oriented dual edge in our mesh. We should also make
sure that ϕji = −ϕij. In other words, the motion we make going from face j to face i should be the
opposite of the motion from i to j. Enforcing symmetry ensures that our notion of “parallel” is
consistent no matter which direction we travel. The whole collection of angles ϕ ∈ R|E| is called a
discrete connection.

By the way, does this object sound familiar? It should! In particular, we have a single number
per oriented dual edge, which changes sign when we change orientation. In other words, ϕ is a
real-valued, dual, discrete 1-form.

8.3.3. The Levi-Civita Connection. In terms of the picture above, we said that an angle ϕij = 0
means “just translate; don’t rotate.” If we set all of our angles to zero, we get a very special
connection called the Levi-Civita connection3. The Levi-Civita connection effectively tries to “twist”
a tangent vector as little as possible as it moves it from one point to the next. There are many
ways to describe the Levi-Civita connection in the smooth setting, but a particularly nice geometric
description is given by Kobayashi:

THEOREM 1. (Kobayashi) The Levi-Civita connection on a smooth surface is the pullback under the
Gauss map of the Levi-Civita connection on the sphere.

N × Z

N

Z

X

What does this statement mean? First, recall that the Gauss map N : M→ S2 takes a point on
the surface to its corresponding unit normal—this normal can also be thought of as a point on the
unit sphere. And what’s the Levi-Civita connection on the sphere? Well, we said that Levi-Civita
tries to “twist” vectors as little as possible. On a sphere, it’s not hard to see that the motion of

3Those with some geometry background should note that a discrete connection really encodes the deviation from
Levi-Civita; it should not be thought of as the connection itself.
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least twist looks like a rotation of the tangent plane along a great arc in the direction Z of parallel
transport. More explicitly, we want a rotation around the axis N × Z, where N is the normal of
our initial tangent plane. Altogether, then, Kobayashi’s theorem says the following. If we start out
with a tangent vector X̃ on our surface and want to transport it in the direction Z̃, we should first
find the tangent plane with normal N on the sphere, and the two corresponding tangent vectors
X and Z. (Extrinsically, of course, these are just the same two vectors!) We can then apply an
(infinitesimal) rotation along the great arc in the direction Z, dragging X along with us.

EXERCISE 53. Use Kobayashi’s theorem to justify the “unfold, translate, refold” procedure that
is used to define the discrete Levi-Civita connection. Hint: think about unfolding as a rotation.

8.3.4. Holonomy.

At this point you may be wondering what all this stuff has to do with vector field design. Well,
once we define a connection on our mesh, there’s an easy way to construct a vector field: start out
with an initial vector, parallel transport it to its neighbors using the connection, and repeat until
you’ve covered the surface (as depicted above). One thing to notice is that the vector field we end
up with is completely determined by our choice of connection. In effect, we can design vector fields
by instead designing connections.

However, something can go wrong here: depending on which connection we use, the procedure
above may not provide a consistent description of any vector field. For instance, consider the
planar mesh below, and a connection that applies a rotation of 18◦ as we cross each edge in counter-
clockwise order. By the time we get back to the beginning, we’ve rotated our initial vector ¶ by
only 5× 18◦ = 90◦. In other words, our connection would have us believe that ¶ and » are parallel
vectors!

This phenomenon is referred to as the holonomy of the connection. More generally, holonomy
is the difference in angle between an initial and final vector that has been transported around a
closed loop. (This definition applies in both the discrete and smooth setting.)
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8.3.5. Trivial Connections. To construct a consistently-defined vector field, we must ensure
that our connection has zero holonomy around every loop. Such a connection is called a trivial
connection. In fact, the following exercise shows that this condition is sufficient to guarantee
consistency everywhere:

EXERCISE 54. Show that parallel transport by a trivial connection is path-independent. Hint:
consider two different paths from point a to point b.

As a result we can forget about the particular paths along which vectors are transported, and
can again imagine that we simply “teleport” them directly from one point to another. If we then
reconstruct a vector field via a trivial connection, we get a parallel vector field, i.e., a field where (at
least according to the connection) every vector is parallel to every other vector. In a sense, parallel
vector fields on surfaces are a generalization of constant vector fields in the plane. But actually, the
following exercise shows that any vector field can be considered parallel—as long as we choose the
right connection:

EXERCISE 55. Show that every discrete vector field (i.e., a vector per face) is parallel with respect
to some trivial discrete connection. Hint: think about the difference between vectors in adjacent triangles.

8.3.6. Curvature of a Connection. We can use a trivial connection to define a vector field, but
how do we find a trivial connection? The first thing you might try is the Levi-Civita connection—
after all, it has a simple, straightforward definition. Sadly, the Levi-Civita connection is not in
general trivial:

EXERCISE 56. Show that the holonomy of the discrete Levi-Civita connection around the
boundary of any dual cell equals the angle defect of the enclosed vertex.

Therefore, unless our mesh is completely flat, Levi-Civita will exhibit some non-zero amount of
holonomy. Actually, you may recall that angle defect is used to define a discrete notion of Gaussian
curvature. We can also use a connection to determine curvature—in particular, the curvature of a
connection (smooth or discrete) over a topological disk D ⊂ M is given by the holonomy around
the region boundary ∂D.

EXERCISE 57. Show that these two notions of curvature are the same, i.e., show that the
curvature of the discrete Levi-Civita connection over any disk D equals the total discrete Gaussian
curvature over that region. Hint: use induction on faces.

Curvature gives us one tool to test whether a connection is trivial. In particular, a trivial
connection must have zero curvature everywhere. For this reason it’s reasonable to say that every
trivial connection is “flat.” But is every flat connection also trivial? Well, remember that the
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curvature of a connection is defined in terms of the holonomy around region boundaries. Any such
boundary is called a contractible loop because it can be continuously deformed to a point without
“catching” on anything:

In general, there may also be noncontractible loops on a surface that cannot be described as the
boundary of any disk. For instance, consider the loop γ pictured on the torus to the left:

γ γ3

In general a surface of genus g will have 2g “basic types” of noncontractible loops called
generators. More precisely, two loops are said to be homotopic if we can get from one to the other
by simply sliding it along the surface without ever breaking it. No two distinct generators are
homotopic to each other, and what’s more, we can connect multiple copies of the generators to

“generate” any noncontractible loop on the surface. For instance, consider the loop γ3, which consists
of three copies of γ joined end-to-end. (Formally, the space of loops together with the operation of
concatenation describe the first homology group on the surface.)

If we want to check if a connection is trivial, we need to know that it has nontrivial holonomy
around both contractible and noncontractible loops. Equivalently: it must have zero curvature and
nontrivial holonomy around noncontractible loops. As you’re about to demonstrate, though, we
don’t need to check all the loops—just a small collection of basis loops.

EXERCISE 58. Show that the holonomy around any discrete loop is determined by the curvature
at each vertex and the holonomy around a collection of 2g generators.

8.3.7. Singularities. There’s one more issue we run into when trying to find a trivial connection.
You may remember the Gauss-Bonnet theorem, which says that ∑v∈V d(v) = 2πχ, i.e., the total
Gaussian curvature over a surface equals 2π times the Euler characteristic χ. In fact, this theorem
holds if we replace the Gaussian curvature with the curvature of any connection (not just Levi-
Civita). But something’s odd here: didn’t we say that a trivial connection should have zero
holonomy—hence zero curvature? So unless χ = 0 (i.e., M is a torus) we have a problem!

Fortunately the solution is simple: we can permit our connection to exhibit nonzero holonomy
(hence nonzero curvature) around some loops, as long as this holonomy is an integer multiple
of 2π. Geometrically, a vector parallel transported around any closed loop will still end up back
where it started, even if it “spins around” some whole number of times k along the way. Any vertex
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where k 6= 0 is called a singularity (see below for some examples). As we’ll see in the moment,
singularities actually make it easier to design vector fields with the desired appearance, since one
can control the global appearance of the field using only a small number of degrees of freedom.

8.4. Vector Field Design

Now on to the fun part: designing vector fields. At this point, you’ve already written most
of the code you’ll need! But let’s take a look at the details. To keep things simple we’re going to
assume that M is a topological sphere, so you can forget about non-contractible loops for now.

Our goal is to find a connection 1-form ϕ such that the holonomy around every loop is zero.
If we let ϕij = 0 for every dual edge e?ij, then the holonomy around any dual cell will be equal to
the integrated Gaussian curvature over that cell (Exercise 56), which we’ll denote by K ∈ R|V|.
Therefore, we need to find angles ϕij such that

dT
0 ϕ = −K, (2)

i.e., the holonomy around the boundary of every dual cell should exactly cancel the Gaussian
curvature. (Notice that dT

0 is the discrete exterior derivative on dual 1-forms.) We also need to
incorporate singularities. That’s easy enough: we can just ask that the angles ϕij cancel the existing
Gaussian curvature, but add curvature corresponding to singularities:

dT
0 ϕ = −K + 2πk. (3)

Here k ∈ Z|V| is a vector of integers encoding the type of singularity we want at each vertex. To
“design” a vector field, then, we can just set k to a nonzero value wherever we want a singularity.
Of course, we need to make sure that ∑i ki = χ so that we do not violate Gauss-Bonnet.

CODING 20. Implement the method Vertex::totalGaussCurvature() which computes
the total Gauss curvature of the dual vertex associated with a given vertex, i.e., 2π minus the sum
of incident angles.

We now have a nice linear system whose solution gives us a trivial connection with a prescribed
set of singularities. One last question, though: is the solution unique? Well, our connection
is determined by one angle per edge, and we have one equation to satisfy per dual cell—or
equivalently, one per vertex. But since we have roughly three times as many edges as vertices
(which you showed earlier on!), this system is underdetermined. In other words, there are many
different trivial connections on our surface. Which one gives us the “nicest” vector field? While
there’s no completely objectively answer to this question, the most reasonable thing may be
to look for the trivial connection closest to Levi-Civita. Why? Well, remember that Levi-Civita
“twists” vectors as little as possible, so we’re effectively asking for the smoothest vector field.
Computationally, then, we need to find the solution to Equation 3 with minimum norm (since the
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angles ϕij already encode the deviation from Levi-Civita). As a result, we get the optimization
problem

min
ϕ∈R|E|

||ϕ||2

s.t. dT
0 ϕ = −K + 2πk.

(4)

One way to solve this problem would be to use some kind of steepest descent method, like we did
for mean curvature flow. However, we can be a bit more clever here by recognizing that Equation 4
is equivalent to looking for the solution to Equation 3 that has no component in the null space of
dT

0 —any other solution will have larger norm.

EXERCISE 59. Show that the null space of dT
0 is spanned by the columns of dT

1 . Hint: what
happens when you apply d twice?

Hence, to get the smoothest trivial connection with the prescribed curvature we could (1)
compute any solution ϕ̃ to Equation 3, then (2) project out the null space component by computing
ϕ = ϕ̃− dT

1 (d1dT
1 )
−1d1 ϕ̃. Overall, then, we get a trivial connection by solving two nice, sparse linear

systems. Sounds pretty good, and in fact that’s how the algorithm was originally proposed way
back in 2010. But it turns out there’s an even nicer, more elegant way to compute trivial connections,
using Helmholtz-Hodge decomposition. (This formulation will also make it a little easier to work
with surfaces of nontrivial topology.)

8.4.1. Trivial Connections++. So far, we’ve been working with a 1-form ϕ, which describes
the deviation of our connection from Levi-Civita. Just for fun, let’s rewrite this problem in the
smooth setting, on a closed surface M of genus g. Our measure of smoothness is still the total
deviation from Levi-Civita, which we can again write as ||ω||2. We still have the same constraint
on simply-connected cycles, namely dω = v where v = −K + 2πk (in the smooth setting, we can
think of k as a sum of Dirac deltas). This time around, we’ll also consider the holonomy around the
2g nontrivial generators `i. Again, we’ll use the 1-form ω to “cancel” the holonomy we experience
in the smooth setting, i.e., we’ll enforce the constraint∫

`i

ω = vi,

where −vi is the holonomy we get by walking around the loop `i. (In the discrete setting we can
measure this quantity as before: transport a vector around each loop by unfolding, sliding, and
refolding without any extra in-plane rotation.) Overall, then, we get the optimization problem

min
ϕ
||ϕ||2

s.t. dω = u,∫
`i

ω = vi, i = 1, . . . , 2g.
(5)

Like any other 1-form, ϕ has a Hodge decomposition, i.e., we can write it as

ϕ = dα + δβ + γ

for some 0-form α, 2-form β, and harmonic 1-form γ. This expression can be used to simplify our
optimization problem, as you are about to show!

EXERCISE 60. Show that Equation 5 can be rewritten as

min
ϕ
||β||2 + ||γ||2

s.t. dδβ = u,∫
`i

δβ + γ = vi, i = 1, . . . , 2g.
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Hint: use Stokes’ theorem and the result of Exercise 42.

There are a couple nice things about this reformulation. First, we can find the coexact part
by simply solving the linear equation dδβ = u, or equivalently d ? d ? β = u. As with Hodge
decomposition, we can make this system even nicer by making the substitution β̃ := ?β, in which
case we end up with a standard scalar Poisson problem

∆β̃ = u. (6)

We can then recover β itself via β = ?β̃, as before. Note that the solution β̃ is unique up to a
constant, since on a compact domain the only harmonic 0-forms are the constant functions (as you
showed when we studied the Poisson equation). Of course, since constants are in the kernel of δ,
we still get a uniquely-determined coexact part δβ.

The second nice thing about this formulation is that we can directly solve for the harmonic part
γ by solving the system of linear equations∫

`i

γ = vi −
∫
`i

δβ,

i.e., since δβ is uniquely determined by Equation 6, we can just move it to the right-hand side.

A slightly nicer way to write this latter system is using the period matrix of our surface. Let
`1, . . . , `2g be a collection of homology generators, and let ξ1, . . . , ξ2g be a basis for the harmonic
1-forms. The period matrix P ∈ R2g×2g is then given by

Pij =
∫
`i

ξi,

i.e., it measures how much each harmonic basis “lines up” with each generating cycle. Period
matrices have an intimate relationship with the conformal structure of a surface, which we discussed
when looking at parameterization. But we don’t have time to talk about that now—we have to
compute vector fields! In the discrete setting, we can compute the entries of the period matrix by
simply summing up 1-form values over generating cycles. In other words, if `i is a collection of
dual edges forming a loop, and ξi is a dual discrete 1-form (i.e., a value per dual edge), then we
have

Pij = ∑
e?k∈`i

(ξ j)k.

CODING 21. Implement the method Connection::buildPeriodMatrix(), which simply
sums up the values of the harmonic 1-form bases over each homology generator. (You should
compute these quantities using your existing implementation of TREE-COTREE and HARMONIC-
BASIS.)

Once we have the period matrix, we can express our constraint on generator holonomy as
follows. Let z ∈ R2g be the coefficients of the harmonic component γ with respect to our basis of
harmonic 1-forms, i.e.,

γ =
2g

∑
i=1

ziξi.

Also, let ṽ ∈ R2g be the right-hand side of our constraint equation, encoding both the desired
generator holonomy as well as the integrals of the coexact part along each generator:

ṽi = vi −
∫
`i

δβ.
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Then the harmonic component can be found by solving the 2g× 2g linear system

Pz = ṽ,

where the period matrix P is constant (i.e., it depends only on the mesh geometry and not the
configuration of singularities or generator holonomy).

Overall, then, we have the following algorithm for computing the smoothest vector field on a
simplicial surface with a prescribed collection of singularities:

Algorithm 6: TRIVIAL-CONNECTION++

Require: Vector k ∈ Z|V| of singularity indices adding up to 2πχ
1: Solve ∆β̃ = u
2: Solve Pz = ṽ
3: ω ← δβ + γ

The resulting 1-form can be used to produce a unit vector field via the procedure described
in Section 8.3.4. Note that the most expensive part of the entire algorithm is prefactoring the
cotan-Laplace matrix, which is subsequently used to compute both the harmonic 1-form bases and
to update the potential β. In comparison, all other steps (finding generating loops, etc.) have a
negligible cost, and moreover can be computed just once upon initialization (e.g., the period matrix
P). In short, finding the smoothest vector field with prescribed singularities costs about as much as solving a
single scalar Poisson problem! If you’ve been paying attention, you’ll notice that this statement is kind
of a theme in these notes: if treated correctly, many of the fundamental geometry processing tasks
we’re interested in basically boil down to solving a Poisson equation. (This outcome is particularly
nice, since in principle we can use the same prefactorization for many different applications!)

CODING 22. Write the method Connection::compute(), which implements the algorithm
TRIVIAL-CONNNECTION++. You should now be able to edit vector fields through the Viewer by
shift-clicking on singularities.



CHAPTER 9

Conclusion

Given the framework you’ve already built, a bunch of other geometry processing algorithms
can be implemented almost immediately. For instance, one can compute shortest paths or geodesic
distance by solving a Poisson equation and integrating a heat flow, just as in Chapter 6 [CWW13].
One can also improve the quality of the mesh itself, again by solving simple Poisson equations
[MMdGD11]. More broadly, one can use these tools to simulate mechanical phenomena such as
elastic bodies [ACOL00]. These topics (and more!) will be covered in a future revision of these
notes.
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APPENDIX A

A Nice Formula for Normal Curvature

f

Mc
f (c)

n

N T

X

Consider a unit-speed curve c(t) on a domain M ⊂ R2, and an immersion f of M into R3; the
composition γ = f (c) defines a curve in R3. Letting X = ċ denote the time derivative of c, we can
express the unit tangent field on γ as

T =
df(X)

|df(X)| .

Recall from our notes on curves that the curvature normal κn is defined as the change in tangent
direction as we travel along the curve at unit speed (we’ll use a lowercase “n” here to distinguish
from the surface normal N). In this case, however, the initially unit-speed curve c may get stretched
out by the map f . Therefore, to get the curvature normal we have to evaluate

κn =
dT
d`

,

where ` denotes the distance traveled in R3 along γ. The normal curvature κn(γ) can be defined as
the projection of the curvature normal onto the surface normal N. More explicitly, we have

κn = N · κn = N · dT
d`

= N · dT
dt

dt
d`

.

The quantity d`
dt is just the amount by which the curve gets stretched out as we go from M into R3,

which we can also write as |df(X)|. We therefore have
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|df(X)|κN = N · dT
dt

= N · d
dt

(
df(X)|df(X)|−1)

= N ·
(

d
dt df(X)

)
|df(X)|−1 + N · df(X)︸ ︷︷ ︸

=0

(
d
dt |df(X)|−1

)
= N ·

(
d
dt df (ċ)

)
|df (ċ)|−1

=
N · df (c̈)
|df (ċ)| .

Noting that N · df (ċ) = 0 implies N · df (c̈) = −Ṅ · df (ċ), and moreover that Ṅ = dN(ċ), we get

|df(X)|κN =
−dN(ċ) · df (ċ)
|df (ċ)| ,

or equivalently

κN =
−dN(X) · df(X)

|df(X)|2 ,

which is the formula introduced earlier.



APPENDIX B

Why Are Principal Directions Orthogonal?

Earlier we stated that the unit principal directions X1, X2 are orthogonal with respect to the
metric g induced by the immersion f , i.e.,

g(X1, X2) = df (X1) · df (X2) = 0.

First, let’s show that
g(SX, Y) = g(X, SY),

i.e., S is self-adjoint with respect to the induced metric (equivalently: the second fundamental
form II is symmetric in its two arguments, i.e., II(X, Y) = II(Y, X)). To see why, consider that (by
definition) the normal N is orthogonal to any tangent vector df(X):

N · df(X) = 0.

Differentiating this expression with respect to some other direction Y, we get

dN(Y) · df(X) = −N · d(df(X))(Y).

Using the equality of mixed partial derivatives, we see that S is indeed self-adjoint with respect to
g:

g(SX, Y) = dN(X) · df(Y)
= −N · d(df(X))(Y)
= −N · d(df(Y))(X)
= dN(Y) · df(X)
= g(X, SY).

(By the way, the essential trick we used here comes up all the time: if you see a product involving
a derivative, try expressing it in terms of the derivative of a product.) Returning to our original
question, we have

κ1g(X1, X2) = κ1df (X1) · df (X2)
= dN(X1) · df (X2)
= dN(X2) · df (X1)
= κ2df (X2) · df (X1)
= κ2g(X1, X2).

Therefore, either κ1 = κ2 or else g(X1, X2) = 0. But if κ1 = κ2 (i.e., the maximum and minimum
principle curvatures are equal) then we’re at an umbilic point where all normal curvatures are
equal—in this case we’re free to pick the principal directions however we please—in particular, we
can use an arbitrary pair of orthogonal directions. The phenomenon we experience here reflects a
more general phenomenon in linear algebra: roughly speaking, if A is self-adjoint with respect to
B, then A’s eigenvectors will be orthogonal with respect to B.

One final question: why should κ1 and κ2 be the maximum and minimum normal curvatures?
Well, think about what the largest and smallest eigenvalues of a linear map represent: they represent
the largest and smallest amount of “stretch” experienced by a unit vector in any direction. Hence,
the normal curvature can be no larger than κ1 and no smaller than κ2.
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